scholarly journals Genetic transformation with cell wall-associated deoxyribonucleic acid in Bacillus subtilis.

1980 ◽  
Vol 144 (3) ◽  
pp. 957-966 ◽  
Author(s):  
R J Doyle ◽  
U N Streips ◽  
S Imada ◽  
V S Fan ◽  
W C Brown
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Haruka Sugiura ◽  
Ayumi Nagase ◽  
Sayoko Oiki ◽  
Bunzo Mikami ◽  
Daisuke Watanabe ◽  
...  

Abstract Saprophytic bacteria and plants compete for limited nutrient sources. Bacillus subtilis grows well on steamed soybeans Glycine max to produce the fermented food, natto. Here we focus on bacterial responses in conflict between B. subtilis and G. max. B. subtilis cells maintained high growth rates specifically on non-germinating, dead soybean seeds. On the other hand, viable soybean seeds with germinating capability attenuated the initial growth of B. subtilis. Thus, B. subtilis cells may trigger saprophytic growth in response to the physiological status of G. max. Scanning electron microscope observation indicated that B. subtilis cells on steamed soybeans undergo morphological changes to form apertures, demonstrating cell remodeling during saprophytic growth. Further, transcriptomic analysis of B. subtilis revealed upregulation of the gene cluster, yesOPQR, in colonies growing on steamed soybeans. Recombinant YesO protein, a putative, solute-binding protein for the ATP-binding cassette transporter system, exhibited an affinity for pectin-derived oligosaccharide from plant cell wall. The crystal structure of YesO, in complex with the pectin oligosaccharide, was determined at 1.58 Å resolution. This study expands our knowledge of defensive and offensive strategies in interspecies competition, which may be promising targets for crop protection and fermented food production.


2021 ◽  
Author(s):  
Jordan Delisle ◽  
Baptiste Cordier ◽  
Stéphane Audebert ◽  
Matthieu Pophillat ◽  
Caroline Cluzel ◽  
...  
Keyword(s):  

2009 ◽  
Vol 74 (5) ◽  
pp. 543-548 ◽  
Author(s):  
A. S. Shashkov ◽  
N. V. Potekhina ◽  
S. N. Senchenkova ◽  
E. B. Kudryashova

1980 ◽  
Vol 28 (3) ◽  
pp. 692-699 ◽  
Author(s):  
Francis L. Macrina ◽  
Patricia H. Wood ◽  
Kevin R. Jones

By using the basic methodology initially published by Kretschmer et al. (J. Bacteriol. 124 :225-231, 1975), we have been able to introduce phenotypically cryptic plasmids from Streptococcus ferus (formerly Streptococcus mutans subsp. ferus ) into Streptococcus sanguis by genetic transformation. In this system, the entry of the cryptic plasmids is selected indirectly. This is effected with transforming deoxyribonucleic acid mixtures in which the cryptic plasmid deoxyribonucleic acid is present in an approximate 10-fold molar excess with respect to a plasmid (pVA1) known to confer erythromycin resistance. Under such conditions, 5 to 10% of the pVA1-containing erythromycin-resistant transformants were cotransformed with cryptic plasmid deoxyribonucleic acid. pVA1 may be selectively eliminated by growth of its S. sanguis host strain at 42°C, enabling the construction of isogenic strains with and without S. ferus cryptic plasmids. Comparative physiological studies of such strains have failed to reveal any plasmid-conferred phenotypes in S. sanguis. With this procedure, we have been able to physically separate two small cryptic plasmids (2.4 × 10 6 and 2.8 × 10 6 daltons) of S. ferus. Although these plasmids were found naturally to exist in a single S. ferus host, they were able to replicate independently of one another in S. sanguis. Restriction enzyme fingerprinting indicated that these plasmids did not share a common ancestry.


1988 ◽  
Vol 34 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Michael P. Heaton ◽  
Robert B. Johnston ◽  
Thomas L. Thompson

An alanine racemase (EC 5.1.1.1) mutant (Dal−) of Bacillus subtilis required small amounts of D-alanine to synthesize an osmotically stable cell wall in certain growth media. Investigation of the conditions which caused lysis in hypotonic media revealed that in addition to complex media, such as nutrient broth and acid-hydrolyzed casein, glycine inhibited stable cell wall formation. D-Alanine prevented the glycine inhibition. Up to 99% lysis occurred in both dilute and dense cell suspensions (optical densities up to 110) within 2.5 h after adding 1% glycine to late log phase cultures. Intracellular enzymes recovered from the lysate were as active as those from lysozyme-disrupted cells. No amino acid tested other than glycine induced lysis. Dal− mutants can be used for controlled lysis of bacterial cells to facilitate the isolation of normal intracellular constituents and bioengineered products from fermentation processes. Cell walls of most bacteria contain D-alanine; thus, this strategy should be applicable to a wide variety of microorganisms.


2002 ◽  
Vol 184 (9) ◽  
pp. 2344-2351 ◽  
Author(s):  
Mitsuo Ogura ◽  
Hirotake Yamaguchi ◽  
Kazuo Kobayashi ◽  
Naotake Ogasawara ◽  
Yasutaro Fujita ◽  
...  

ABSTRACT The Bacillus subtilis competence transcription factor ComK is required for establishment of competence for genetic transformation. In an attempt to study the ComK factor further, we explored the genes regulated by ComK using the DNA microarray technique. In addition to the genes known to be dependent on ComK for expression, we found many genes or operons whose ComK dependence was not known previously. Among these genes, we confirmed the ComK dependence of 16 genes by using lacZ fusions, and three genes were partially dependent on ComK. Transformation efficiency was significantly reduced in an smf disruption mutant, although disruption of the other ComK-dependent genes did not result in significant decreases in transformation efficiency. Nucleotide sequences similar to that of the ComK box were found for most of the newly discovered genes regulated by ComK.


Sign in / Sign up

Export Citation Format

Share Document