Levels of cell wall enzymes in endospores and vegetative cells of Bacillus subtilis

1982 ◽  
Vol 152 (3) ◽  
pp. 1147-1153
Author(s):  
V M Reusch ◽  
S G Hale ◽  
B J Hurly

Vegetative bacilli and refractile endospores of Bacillus subtilis 168 were disrupted by homogenization with glass beads and fractionated by differential centrifugation. Most of the protein of endospores was particulate, whereas for bacilli most was soluble. Alanine racemase activity was sixfold higher in extract of endospores than in extract of bacilli and was particulate, whereas the enzyme from bacilli was soluble. The specific activities of seven other enzymes involved in peptidoglycan and teichoic acid biosynthesis were higher in extracts of bacilli than in those of endospores. The results suggest that restoration of activities of these seven enzymes to vegetative levels occurs during germination and outgrowth.

1970 ◽  
Vol 120 (1) ◽  
pp. 159-170 ◽  
Author(s):  
R. C. Hughes ◽  
P. J. Tanner ◽  
Elaine Stokes

1. Incubation of Bacillus subtilis 168 trp in a glucose–amino acids–salts medium lacking tryptophan leads to an inhibition of cellular growth without affecting cell-wall synthesis. The cell walls increased approximately two- to three-fold in thickness and at the same time the amount of mucopeptide in the cells measured chemically increased to about the same extent. 2. Synthesis of mucopeptide and teichoic acid as measured by the extent of incorporation of radioactivity continued linearly for approximately 1h and then stopped. No reason was found for the strictly limited synthesis of the wall polymers. 3. The initial rates of incorporation of [32P]Pi or [3H]alanine into teichoic acid and of 3H-labelled amino acids into mucopeptide were not appreciably inhibited by the addition of chloramphenicol to the glucose–amino acids–salts medium. 4. There was no selective turnover of the mucopeptide synthesized by the cells in a medium lacking tryptophan on resumption of growth in a complete medium. 5. Wall synthesis taking place during the thickening process was similar to normal wall synthesis proceeding in growing cells. Walls of different thicknesses prepared from cells incubated for various times in incomplete medium did not differ qualitatively in composition. The products of autolysis of thickened walls were isolated and the analyses indicated a close similarity in the details of their mucopeptide structure compared with the mucopeptide of cells growing in the exponential phase.


1988 ◽  
Vol 34 (3) ◽  
pp. 256-261 ◽  
Author(s):  
Michael P. Heaton ◽  
Robert B. Johnston ◽  
Thomas L. Thompson

An alanine racemase (EC 5.1.1.1) mutant (Dal−) of Bacillus subtilis required small amounts of D-alanine to synthesize an osmotically stable cell wall in certain growth media. Investigation of the conditions which caused lysis in hypotonic media revealed that in addition to complex media, such as nutrient broth and acid-hydrolyzed casein, glycine inhibited stable cell wall formation. D-Alanine prevented the glycine inhibition. Up to 99% lysis occurred in both dilute and dense cell suspensions (optical densities up to 110) within 2.5 h after adding 1% glycine to late log phase cultures. Intracellular enzymes recovered from the lysate were as active as those from lysozyme-disrupted cells. No amino acid tested other than glycine induced lysis. Dal− mutants can be used for controlled lysis of bacterial cells to facilitate the isolation of normal intracellular constituents and bioengineered products from fermentation processes. Cell walls of most bacteria contain D-alanine; thus, this strategy should be applicable to a wide variety of microorganisms.


2002 ◽  
Vol 184 (15) ◽  
pp. 4316-4320 ◽  
Author(s):  
Blazenka Soldo ◽  
Vladimir Lazarevic ◽  
Harold M. Pooley ◽  
Dimitri Karamata

ABSTRACT The Bacillus subtilis thermosensitive mutant ts-21 bears two C-G→T-A transitions in the mnaA gene. At the nonpermissive temperature it is characterized by coccoid cell morphology and reduced cell wall phosphate content. MnaA converts UDP-N-acetylglucosamine into UDP-N-acetylmannosamine, a precursor of the teichoic acid linkage unit.


2011 ◽  
Vol 346 (9) ◽  
pp. 1173-1177 ◽  
Author(s):  
Alexander S. Shashkov ◽  
Galina M. Streshinskaya ◽  
Yuliya I. Kozlova ◽  
Sof’ya N. Senchenkova ◽  
Nikolay P. Arbatsky ◽  
...  

1969 ◽  
Vol 111 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D C Ellwood ◽  
D. W. Tempest

1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg2+-limitation to PO43−-limitation or K+-limitation to PO43−-limitation showed that teichuronic acid synthesis started immediately the culture became PO43−-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO43−-limited B. subtilis var. niger culture was returned to being Mg2+-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.


2015 ◽  
Vol 197 (8) ◽  
pp. 1492-1506 ◽  
Author(s):  
Letal I. Salzberg ◽  
Eric Botella ◽  
Karsten Hokamp ◽  
Haike Antelmann ◽  
Sandra Maaß ◽  
...  

ABSTRACTThe PhoPR two-component signal transduction system controls one of three responses activated byBacillus subtilisto adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, inB. subtilisand some otherFirmicutesbacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB,yqgS,wapA, anddacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation ofphoPRexpression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3′ end of thephoPRoperon.IMPORTANCEThe PhoPR two-component system controls one of three responses mounted byB. subtilisto adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB,yqgS,wapA, anddacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation ofphoPRexpression requires PhoP∼P binding to the 3′ end of the operon.


2001 ◽  
Vol 183 (22) ◽  
pp. 6688-6693 ◽  
Author(s):  
Amit P. Bhavsar ◽  
Terry J. Beveridge ◽  
Eric D. Brown

ABSTRACT Using a previously reported conditional expression system for use in Bacillus subtilis (A. P. Bhavsar, X. Zhao, and E. D. Brown, Appl. Environ. Microbiol. 67:403–410, 2001), we report the first precise deletion of a teichoic acid biosynthesis (tag) gene, tagD,in B. subtilis. This teichoic acid mutant showed a lethal phenotype when characterized at a physiological temperature and in a defined genetic background. This tagD mutant was subject to full phenotypic rescue upon expression of the complementing copy oftagD. Depletion of the tagD gene product (glycerol 3-phosphate cytidylyltransferase) via modulated expression of tagD from the amyE locus revealed structural defects centered on shape, septation, and division. Thickening of the wall and ultimately lysis followed these events.


Sign in / Sign up

Export Citation Format

Share Document