scholarly journals Precise Deletion of tagD and Controlled Depletion of Its Product, Glycerol 3-Phosphate Cytidylyltransferase, Leads to Irregular Morphology and Lysis of Bacillus subtilisGrown at Physiological Temperature

2001 ◽  
Vol 183 (22) ◽  
pp. 6688-6693 ◽  
Author(s):  
Amit P. Bhavsar ◽  
Terry J. Beveridge ◽  
Eric D. Brown

ABSTRACT Using a previously reported conditional expression system for use in Bacillus subtilis (A. P. Bhavsar, X. Zhao, and E. D. Brown, Appl. Environ. Microbiol. 67:403–410, 2001), we report the first precise deletion of a teichoic acid biosynthesis (tag) gene, tagD,in B. subtilis. This teichoic acid mutant showed a lethal phenotype when characterized at a physiological temperature and in a defined genetic background. This tagD mutant was subject to full phenotypic rescue upon expression of the complementing copy oftagD. Depletion of the tagD gene product (glycerol 3-phosphate cytidylyltransferase) via modulated expression of tagD from the amyE locus revealed structural defects centered on shape, septation, and division. Thickening of the wall and ultimately lysis followed these events.

2001 ◽  
Vol 67 (1) ◽  
pp. 403-410 ◽  
Author(s):  
Amit P. Bhavsar ◽  
Xumei Zhao ◽  
Eric D. Brown

ABSTRACT We have developed a xylose-dependent expression system for tight and modulated expression of cloned genes in Bacillus subtilis. The expression system is contained on plasmid pSWEET for integration at the amyE locus of B. subtilis and incorporates components of the well-characterized, divergently transcribed xylose utilization operon. The system contains the xylose repressor encoded by xylR, the promoter and 5′ portion of xylA containing an optimized catabolite-responsive element, and intergenic xyl operator sequences. We have rigorously compared this expression system to the isopropyl-β-d-thiogalactopyranoside-inducedspac system using a thermostable β-galactosidase reporter (BgaB) and found the xyl promoter-operator to have a greater capacity for modulated expression, a higher induction/repression ratio (279-fold for the xyl system versus 24-fold with the spac promoter), and lower levels of expression in the absence of an inducer. We have used this system to probe an essential function in wall teichoic acid biosynthesis inB. subtilis. Expression of the teichoic acid biosynthesis gene tagD, encoding glycerol-3-phosphate cytidylyltransferase, from the xylose-based expression system integrated at amyE exhibited xylose-dependent complementation of the temperature-sensitive mutant tag-12when grown at the nonpermissive temperature. Plasmid pSWEET thus provides a robust new expression system for conditional complementation in B. subtilis.


1982 ◽  
Vol 152 (3) ◽  
pp. 1147-1153
Author(s):  
V M Reusch ◽  
S G Hale ◽  
B J Hurly

Vegetative bacilli and refractile endospores of Bacillus subtilis 168 were disrupted by homogenization with glass beads and fractionated by differential centrifugation. Most of the protein of endospores was particulate, whereas for bacilli most was soluble. Alanine racemase activity was sixfold higher in extract of endospores than in extract of bacilli and was particulate, whereas the enzyme from bacilli was soluble. The specific activities of seven other enzymes involved in peptidoglycan and teichoic acid biosynthesis were higher in extracts of bacilli than in those of endospores. The results suggest that restoration of activities of these seven enzymes to vegetative levels occurs during germination and outgrowth.


1971 ◽  
Vol 20 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Jean Heijenoort ◽  
Daniele Menjon ◽  
Bernard Flouret ◽  
Jekisiel Szulmajster ◽  
Jean Laporte ◽  
...  

2011 ◽  
Vol 120 (9) ◽  
pp. 403-413 ◽  
Author(s):  
Mark A. Russell ◽  
Noel G. Morgan

Common polymorphisms within the FTO (fat mass and obesity-associated) gene correlate with increased BMI (body mass index) and a rising risk of Type 2 diabetes. FTO is highly expressed in the brain but has also been detected in peripheral tissues, including the endocrine pancreas, although its function there is unclear. The aim of the present study was to investigate the role of FTO protein in pancreatic β-cells using a conditional expression system developed in INS-1 cells. INS-1 cells were stably transfected with FTO–HA (haemagluttinin) incorporated under the control of a tetracycline-inducible promoter. Induction of FTO protein resulted in localization of the tagged protein to the nucleus. The level of FTO–HA protein achieved in transfected cells was tightly regulated, and experiments with selective inhibitors revealed that FTO–HA is rapidly degraded via the ubiquitin/proteasome pathway. The nuclear localization was not altered by proteasome inhibitors, although following treatment with PYR-41, an inhibitor of ubiquitination, some of the protein adopted a perinuclear localization. Unexpectedly, modestly increased expression of FTO–HA selectively enhanced the first phase of insulin secretion when INS-1 monolayers or pseudoislets were stimulated with 20 mM glucose, whereas the second phase remained unchanged. The mechanism responsible for the potentiation of glucose-induced insulin secretion is unclear; however, further experiments revealed that it did not involve an increase in insulin biosynthesis or any changes in STAT3 (signal transducer and activator of transcription 3) expression. Taken together, these results suggest that the FTO protein may play a hitherto unrecognized role in the control of first-phase insulin secretion in pancreatic β-cells.


2016 ◽  
Vol 198 (21) ◽  
pp. 2925-2935 ◽  
Author(s):  
Heng Zhao ◽  
Yingjie Sun ◽  
Jason M. Peters ◽  
Carol A. Gross ◽  
Ethan C. Garner ◽  
...  

ABSTRACTThe integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. InBacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimizedclusteredregularlyinterspacedshortpalindromicrepeat (CRISPR) system with catalytically inactive (“dead”)CRISPR-associated protein9(dCas9)-based transcriptional repression system (CRISPR interference [CRISPRi]), we demonstrate thatB. subtilisrequires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the σM-dependent cell envelope stress response, includingbcrC, which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for the investigation of synthetic lethal gene pairs, clarify the nature of theB. subtilisUPP-Pase enzymes, and provide further evidence linking the σMregulon to cell envelope homeostasis pathways.IMPORTANCEThe emergence of antibiotic resistance among bacterial pathogens is of critical concern and motivates efforts to develop new therapeutics and increase the utility of those already in use. The lipid II cycle is one of the most frequently targeted processes for antibiotics and has been intensively studied. Despite these efforts, some steps have remained poorly defined, partly due to genetic redundancy. CRISPRi provides a powerful tool to investigate the functions of essential genes and sets of genes. Here, we used an optimized CRISPRi system to demonstrate functional redundancy of two UPP phosphatases that are required for the conversion of the initially synthesized UPP lipid carrier to Und-P, the substrate for the synthesis of the initial lipid-linked precursors in peptidoglycan and wall teichoic acid synthesis.


2007 ◽  
Vol 278 (4) ◽  
pp. 371-383 ◽  
Author(s):  
Tatsuya Fukushima ◽  
Yang Yao ◽  
Toshihiko Kitajima ◽  
Hiroki Yamamoto ◽  
Junichi Sekiguchi

2011 ◽  
Vol 80 (2) ◽  
pp. 335-349 ◽  
Author(s):  
Natalia Martin ◽  
Quin H. Christensen ◽  
María C. Mansilla ◽  
John E. Cronan ◽  
Diego de Mendoza

Sign in / Sign up

Export Citation Format

Share Document