scholarly journals H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome.

1995 ◽  
Vol 177 (16) ◽  
pp. 4703-4712 ◽  
Author(s):  
B Colonna ◽  
M Casalino ◽  
P A Fradiani ◽  
C Zagaglia ◽  
S Naitza ◽  
...  
mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Amy Platenkamp ◽  
Jay L. Mellies

ABSTRACT Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression, and they found variation among individual isolates. Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression. They also found variation among individual isolates. Their work illustrates the importance of moving beyond observing regulatory phenomena of a limited number of regulons in a few archetypal strains, with the possibility of correlating clinical symptoms to key transcriptional pathways across lineages and phylogroups.


2001 ◽  
Vol 183 (12) ◽  
pp. 3704-3711 ◽  
Author(s):  
Scott M. Lohrke ◽  
Hongjiang Yang ◽  
Shouguang Jin

ABSTRACT The ability to utilize Escherichia coli as a heterologous system in which to study the regulation ofAgrobacterium tumefaciens virulence genes and the mechanism of transfer DNA (T-DNA) transfer would provide an important tool to our understanding and manipulation of these processes. We have previously reported that the rpoA gene encoding the alpha subunit of RNA polymerase is required for the expression of lacZ gene under the control of virB promoter (virBp::lacZ) in E. colicontaining a constitutively active virG gene [virG(Con)]. Here we show that an RpoA hybrid containing the N-terminal 247 residues from E. coli and the C-terminal 89 residues from A. tumefaciens was able to significantly express virBp::lacZ in E. coli in a VirG(Con)-dependent manner. Utilization oflac promoter-driven virA and virGin combination with the A. tumefaciens rpoA construct resulted in significant inducer-mediated expression of thevirBp::lacZ fusion, and the level ofvirBp::lacZ expression was positively correlated to the copy number of the rpoA construct. This expression was dependent on VirA, VirG, temperature, and, to a lesser extent, pH, which is similar to what is observed in A. tumefaciens. Furthermore, the effect of sugars on virgene expression was observed only in the presence of thechvE gene, suggesting that the glucose-binding protein ofE. coli, a homologue of ChvE, does not interact with the VirA molecule. We also evaluated other phenolic compounds in induction assays and observed significant expression with syringealdehyde, a low level of expression with acetovanillone, and no expression with hydroxyacetophenone, similar to what occurs in A. tumefaciens strain A348 from which the virA clone was derived. These data support the notion that VirA directly senses the phenolic inducer. However, the overall level of expression of thevir genes in E. coli is less than what is observed in A. tumefaciens, suggesting that additional gene(s) from A. tumefaciens may be required for the full expression of virulence genes in E. coli.


Microbiology ◽  
2012 ◽  
Vol 158 (4) ◽  
pp. 1084-1093 ◽  
Author(s):  
Xianhua Yin ◽  
Yanni Feng ◽  
Yang Lu ◽  
James R. Chambers ◽  
Joshua Gong ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Petya Berger ◽  
Michael Knödler ◽  
Konrad U. Förstner ◽  
Michael Berger ◽  
Christian Bertling ◽  
...  

2012 ◽  
Vol 75 (4) ◽  
pp. 748-752 ◽  
Author(s):  
V. DELCENSERIE ◽  
G. LaPOINTE ◽  
T. CHARASLERTRANGSI ◽  
A. RABALSKI ◽  
M. W. GRIFFITHS

Escherichia coli O157:H7 is responsible for a human toxico-infection that can lead to severe complications such as hemolytic uremic syndrome. Inside the intestine, E. coli O157:H7 forms typical attaching-effacing lesions and produces Shiga toxins. The genes that are responsible for these lesions are located in a pathogenicity island called the locus of enterocyte effacement (LEE). LEE gene expression is influenced by quorum sensing through the luxS system. In this study, the effect of glucose on the expression of several genes from LEE, on the expression of Shiga toxin genes, and on the expression of luxS was assessed with real-time, reverse transcription PCR. All concentrations of glucose (from 0.1 to 1%) were able to down-regulate genes from the LEE operon. A slight down-regulation of genes implicated in Shiga toxin expression was also observed but was significant for low doses of glucose (0.1 to 0.5%) only. A slight but significant increase in luxS expression was observed with 1% glucose. This confirms that in addition to quorum sensing, the presence or absence of nutrients such as glucose has an impact on the down- or upregulation of LEE-encoded virulence genes by the bacterium. The influence of glucose on the virulence of E. coli O157:H7 has received little attention, and these results suggest that glucose can have an important effect on the virulence of E. coli O157:H7.


2012 ◽  
Vol 53 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Haydee Martínez ◽  
Thomas Buhse ◽  
Marco Rivera ◽  
P. Parmananda ◽  
Guadalupe Ayala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document