scholarly journals Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump.

1996 ◽  
Vol 178 (13) ◽  
pp. 3791-3795 ◽  
Author(s):  
J Liu ◽  
H E Takiff ◽  
H Nikaido
2008 ◽  
Vol 54 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Sanela Begic ◽  
Elizabeth A. Worobec

Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance–Nodulation–Cell Division family pump with limited substrate specificity.


1998 ◽  
Vol 180 (17) ◽  
pp. 4686-4692 ◽  
Author(s):  
Hiroshi Nikaido ◽  
Marina Basina ◽  
Vy Nguyen ◽  
Emiko Y. Rosenberg

ABSTRACT We found that the previously reported SS-B drug-supersusceptible mutant of Salmonella typhimurium (S. Sukupolvi, M. Vaara, I. M. Helander, P. Viljanen, and P. H. Mäkelä, J. Bacteriol. 159:704–712, 1984) had a mutation in the acrAB operon. Comparison of this mutant with its parent strain and with an AcrAB-overproducing strain showed that the activity of the AcrAB efflux pump often produced significant resistance to β-lactam antibiotics in the complete absence of β-lactamase. The effect of AcrAB activity on resistance was more pronounced with agents containing more lipophilic side chains, suggesting that such compounds were better substrates for this pump. This correlation is consistent with the hypothesis that only those molecules that become at least partially partitioned into the lipid bilayer of the cytoplasmic membrane are captured by the AcrAB pump. According to this mechanism, the pump successfully excretes even those β-lactams that fail to traverse the cytoplasmic membrane, because these compounds are likely to become partitioned into the outer leaflet of the bilayer. Even the compounds with lipophilic side chains were shown to penetrate across the outer membrane relatively rapidly, if the pump was inactivated genetically or physiologically. The exclusion of such compounds, exemplified by nafcillin, from cells of the wild-type S. typhimuriumwas previously interpreted as the result of poor diffusion across the outer membrane (H. Nikaido, Biochim. Biophys. Acta 433:118–132, 1976), but it is now recognized as the consequence of efficient pumping out of entering antibiotics by the active efflux process.


2001 ◽  
Vol 45 (3) ◽  
pp. 800-804 ◽  
Author(s):  
Pedro E. A. Silva ◽  
Fabiana Bigi ◽  
Marı́a de la Paz Santangelo ◽  
Maria Isabel Romano ◽  
Carlos Martı́n ◽  
...  

ABSTRACT The Mycobacterium bovis P55 gene, located downstream from the gene that encodes the immunogenic lipoprotein P27, has been characterized. The gene was identical to the open reading frame of the Rv1410c gene in the genome of Mycobacterium tuberculosisH37Rv, annotated as a probable drug efflux protein. Genes similar toP55 were present in all species of the M. tuberculosis complex and other mycobacteria such asMycobacterium leprae and Mycobacterium avium. By Western blotting, P55 was located in the membrane fraction ofM. bovis. When transformed into Mycobacterium smegmatis after cloning, P55 conferred aminoglycoside and tetracycline resistance. The levels of resistance to streptomycin and tetracycline conferred by P55 were decreased in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the pump inhibitors verapamil and reserpine. M. smegmatiscells expressing the plasmid-encoded P55 accumulated less tetracycline than the control cells. We conclude that P55 is a membrane protein implicated in aminoglycoside and tetracycline efflux in mycobacteria.


2006 ◽  
Vol 50 (12) ◽  
pp. 4044-4052 ◽  
Author(s):  
Silvia Buroni ◽  
Giulia Manina ◽  
Paola Guglierame ◽  
Maria Rosalia Pasca ◽  
Giovanna Riccardi ◽  
...  

ABSTRACT The lfrA gene of Mycobacterium smegmatis encodes an efflux pump which mediates resistance to different fluoroquinolones, cationic dyes, and anthracyclines. The deletion of the lfrR gene, coding for a putative repressor and localized upstream of lfrA, increased the lfrA expression. In this study, reverse transcription-PCR experiments showed that the two genes are organized as an operon, and lacZ reporter fusions were used to identify the lfrRA promoter region. The lfrRA promoter assignment was verified by mapping the transcription start site by primer extension. Furthermore, we found that some substrates of the multidrug transporter LfrA, e.g., acriflavine, ethidium bromide, and rhodamine 123, enhance lfrA expression at a detectable level of transcription. LfrR protein was purified from Escherichia coli as a fusion protein with a hexahistidine tag and found to bind specifically to a fragment 143 bp upstream of lfrR by gel shift analysis. Furthermore, acriflavine was able to cause the dissociation of the LfrR from the promoter, thus suggesting that this molecule interacts directly with LfrR, inducing lfrA expression. These results suggest that the LfrR repressor is able to bind to different compounds, which allows induction of LfrA multidrug efflux pump expression in response to these ones. Together, all data suggest that the LfrA pump is tightly regulated and that the repression and induction can be switched about a critical substrate concentration which is toxic for the cell.


2021 ◽  
Vol 22 (4) ◽  
pp. 2062
Author(s):  
Aneta Kaczor ◽  
Karolina Witek ◽  
Sabina Podlewska ◽  
Veronique Sinou ◽  
Joanna Czekajewska ◽  
...  

In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.


2001 ◽  
Vol 203 (2) ◽  
pp. 235-239 ◽  
Author(s):  
M.Nazmul Huda ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

Sign in / Sign up

Export Citation Format

Share Document