scholarly journals Multidrug Efflux Pump AcrAB of Salmonella typhimuriumExcretes Only Those β-Lactam Antibiotics Containing Lipophilic Side Chains

1998 ◽  
Vol 180 (17) ◽  
pp. 4686-4692 ◽  
Author(s):  
Hiroshi Nikaido ◽  
Marina Basina ◽  
Vy Nguyen ◽  
Emiko Y. Rosenberg

ABSTRACT We found that the previously reported SS-B drug-supersusceptible mutant of Salmonella typhimurium (S. Sukupolvi, M. Vaara, I. M. Helander, P. Viljanen, and P. H. Mäkelä, J. Bacteriol. 159:704–712, 1984) had a mutation in the acrAB operon. Comparison of this mutant with its parent strain and with an AcrAB-overproducing strain showed that the activity of the AcrAB efflux pump often produced significant resistance to β-lactam antibiotics in the complete absence of β-lactamase. The effect of AcrAB activity on resistance was more pronounced with agents containing more lipophilic side chains, suggesting that such compounds were better substrates for this pump. This correlation is consistent with the hypothesis that only those molecules that become at least partially partitioned into the lipid bilayer of the cytoplasmic membrane are captured by the AcrAB pump. According to this mechanism, the pump successfully excretes even those β-lactams that fail to traverse the cytoplasmic membrane, because these compounds are likely to become partitioned into the outer leaflet of the bilayer. Even the compounds with lipophilic side chains were shown to penetrate across the outer membrane relatively rapidly, if the pump was inactivated genetically or physiologically. The exclusion of such compounds, exemplified by nafcillin, from cells of the wild-type S. typhimuriumwas previously interpreted as the result of poor diffusion across the outer membrane (H. Nikaido, Biochim. Biophys. Acta 433:118–132, 1976), but it is now recognized as the consequence of efficient pumping out of entering antibiotics by the active efflux process.

2003 ◽  
Vol 47 (2) ◽  
pp. 665-669 ◽  
Author(s):  
Melissa A. Visalli ◽  
Ellen Murphy ◽  
Steven J. Projan ◽  
Patricia A. Bradford

ABSTRACT Tigecycline has good broad-spectrum activity against many gram-positive and gram-negative pathogens with the notable exception of the Proteeae. A study was performed to identify the mechanism responsible for the reduced susceptibility to tigecycline in Proteus mirabilis. Two independent transposon insertion mutants of P. mirabilis that had 16-fold-increased susceptibility to tigecycline were mapped to the acrB gene homolog of the Escherichia coli AcrRAB efflux system. Wild-type levels of decreased susceptibility to tigecycline were restored to the insertion mutants by complementation with a clone containing a PCR-derived fragment from the parental wild-type acrRAB efflux gene cluster. The AcrAB transport system appears to be associated with the intrinsic reduced susceptibility to tigecycline in P. mirabilis.


2002 ◽  
Vol 46 (11) ◽  
pp. 3386-3393 ◽  
Author(s):  
Patricia Sánchez ◽  
Ana Alonso ◽  
Jose L. Martinez

ABSTRACT We report on the cloning of the gene smeT, which encodes the transcriptional regulator of the Stenotrophomonas maltophilia efflux pump SmeDEF. SmeT belongs to the TetR and AcrR family of transcriptional regulators. The smeT gene is located upstream from the structural operon of the pump genes smeDEF and is divergently transcribed from those genes. Experiments with S. maltophilia and the heterologous host Escherichia coli have demonstrated that SmeT is a transcriptional repressor. S1 nuclease mapping has demonstrated that expression of smeT is driven by a single promoter lying close to the 5′ end of the gene and that expression of smeDEF is driven by an unique promoter that overlaps with promoter PsmeT. The level of expression of smeT is higher in smeDEF-overproducing S. maltophilia strain D457R, which suggests that SmeT represses its own expression. Band-shifting assays have shown that wild-type strain S. maltophilia D457 contains a cellular factor(s) capable of binding to the intergenic smeT-smeD region. That cellular factor(s) was absent from smeDEF-overproducing S. maltophilia strain D457R. The sequence of smeT from D457R showed a point mutation that led to a Leu166Gln change within the SmeT protein. This change allowed overexpression of both smeDEF and smeT in D457R. It was noteworthy that expression of wild-type SmeT did not fully complement the smeT mutation in D457R. This suggests that the wild-type protein is not dominant over the mutant SmeT.


2008 ◽  
Vol 54 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Sanela Begic ◽  
Elizabeth A. Worobec

Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance–Nodulation–Cell Division family pump with limited substrate specificity.


2014 ◽  
Vol 58 (9) ◽  
pp. 5102-5110 ◽  
Author(s):  
Bernardo Ramírez-Zavala ◽  
Selene Mogavero ◽  
Eva Schöller ◽  
Christoph Sasse ◽  
P. David Rogers ◽  
...  

ABSTRACTOverexpression of the multidrug efflux pumpMDR1is one mechanism by which the pathogenic yeastCandida albicansdevelops resistance to the antifungal drug fluconazole. The constitutive upregulation ofMDR1in fluconazole-resistant, clinicalC. albicansisolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activatesMDR1transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However,MDR1expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response inC. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotesMDR1overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 causedMDR1overexpression in a wild-type strain but only weakly in mutants lackingADA2. In the presence of benomyl or H2O2, compounds that induceMDR1expression in an Mrr1- and Cap1-dependent fashion,MDR1was upregulated with the same efficiency in wild-type andada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to theMDR1promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required forMDR1overexpression in fluconazole-resistantC. albicansstrains containing gain-of-function mutations in Mrr1.


2000 ◽  
Vol 13 (5) ◽  
pp. 572-577 ◽  
Author(s):  
Ramón González-Pasayo ◽  
Esperanza Martínez-Romero

Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin.


2002 ◽  
Vol 46 (7) ◽  
pp. 2124-2131 ◽  
Author(s):  
Jun Lin ◽  
Linda Overbye Michel ◽  
Qijing Zhang

ABSTRACT Campylobacter jejuni, a gram-negative organism causing gastroenteritis in humans, is increasingly resistant to antibiotics. However, little is known about the drug efflux mechanisms in this pathogen. Here we characterized an efflux pump encoded by a three-gene operon (designated cmeABC) that contributes to multidrug resistance in C. jejuni 81-176. CmeABC shares significant sequence and structural homology with known tripartite multidrug efflux pumps in other gram-negative bacteria, and it consists of a periplasmic fusion protein (CmeA), an inner membrane efflux transporter belonging to the resistance-nodulation-cell division superfamily (CmeB), and an outer membrane protein (CmeC). Immunoblotting using CmeABC-specific antibodies demonstrated that cmeABC was expressed in wild-type 81-176; however, an isogenic mutant (9B6) with a transposon insertion in the cmeB gene showed impaired production of CmeB and CmeC. Compared to wild-type 81-176, 9B6 showed a 2- to 4,000-fold decrease in resistance to a range of antibiotics, heavy metals, bile salts, and other antimicrobial agents. Accumulation assays demonstrated that significantly more ethidium bromide and ciprofloxacin accumulated in mutant 9B6 than in wild-type 81-176. Addition of carbonyl cyanide m-chlorophenylhydrazone, an efflux pump inhibitor, increased the accumulation of ciprofloxacin in wild-type 81-176 to the level of mutant 9B6. PCR and immunoblotting analysis also showed that cmeABC was broadly distributed in various C. jejuni isolates and constitutively expressed in wild-type strains. Together, these findings formally establish that CmeABC functions as a tripartite multidrug efflux pump that contributes to the intrinsic resistance of C. jejuni to a broad range of structurally unrelated antimicrobial agents.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Maha Alqahtani ◽  
Zhuo Ma ◽  
Harshada Ketkar ◽  
Ragavan Varadharajan Suresh ◽  
Meenakshi Malik ◽  
...  

ABSTRACT Francisella tularensis , the causative agent of tularemia, lacks typical bacterial virulence factors and toxins but still exhibits extreme virulence. The bacterial multidrug efflux systems consist of an inner membrane, a transmembrane membrane fusion protein, and an outer membrane (OM) component that form a contiguous channel for the secretion of a multitude of bacterial products. Francisella contains three orthologs of the OM proteins; two of these, termed TolC and FtlC, are important for tularemia pathogenesis. The third OM protein, SilC, is homologous to the silver cation efflux protein of other bacterial pathogens. The silC gene ( FTL_0686 ) is located on an operon encoding an Emr-type multidrug efflux pump of F. tularensis . The role of SilC in tularemia pathogenesis is not known. In this study, we investigated the role of SilC in secretion and virulence of F. tularensis by generating a silC gene deletion (Δ silC ) mutant and its transcomplemented strain. Our results demonstrate that the Δ silC mutant exhibits increased sensitivity to antibiotics, oxidants, silver, diminished intramacrophage growth, and attenuated virulence in mice compared to wild-type F. tularensis . However, the secretion of antioxidant enzymes of F. tularensis is not impaired in the Δ silC mutant. The virulence of the Δ silC mutant is restored in NADPH oxidase-deficient mice, indicating that SilC resists oxidative stress in vivo . Collectively, this study demonstrates that the OM component SilC serves a specialized role in virulence of F. tularensis by conferring resistance against oxidative stress and silver. IMPORTANCE Francisella tularensis , the causative agent of a fatal human disease known as tularemia, is a category A select agent and a potential bioterror agent. The virulence mechanisms of Francisella are not completely understood. This study investigated the role of a unique outer membrane protein, SilC, of a multidrug efflux pump in the virulence of F. tularensis . This is the first report demonstrating that the OM component SilC plays an important role in efflux of silver and contributes to the virulence of F. tularensis primarily by providing resistance against oxidative stress. Characterization of these unique virulence mechanisms will provide an understanding of the pathogenesis of tularemia and identification of potential targets for the development of effective therapeutics and prophylactics for protection from this lethal disease.


2000 ◽  
Vol 44 (5) ◽  
pp. 1223-1228 ◽  
Author(s):  
Etienne Giraud ◽  
Axel Cloeckaert ◽  
Dominique Kerboeuf ◽  
Elisabeth Chaslus-Dancla

ABSTRACT The occurrence of active efflux and cell wall modifications were studied in Salmonella enterica serovar Typhimurium mutants that were selected with enrofloxacin and whose phenotypes of resistance to fluoroquinolones could not be explained only by mutations in the genes coding for gyrase or topoisomerase IV. Mutant BN18/21 exhibited a decreased susceptibility to ciprofloxacin (MIC = 0.125 μg/ml) but did not have a mutation in the gyrA gene. Mutants BN18/41 and BN18/71 had the same substitution, Gly81Cys in GyrA, but exhibited different levels of resistance to ciprofloxacin (MICs = 2 and 8 μg/ml, respectively). None of the mutants had mutations in the parC gene. Evidence for active efflux was provided by a classical fluorimetric method, which revealed a three- to fourfold decrease in ciprofloxacin accumulation in the three mutants compared to that in the parent strain, which was annuled by addition of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone. In mutant BN18/71, a second fluorimetric method also showed a 50% reduction in the level of accumulation of ethidium bromide, a known efflux pump substrate. Immunoblotting and enzyme-linked immunosorbent assay experiments with an anti-AcrA antibody revealed that the resistance phenotype was strongly correlated with the expression level of the AcrAB efflux pump and suggested that decreased susceptibility to ciprofloxacin due to active efflux probably related to overproduction of this pump could occur before that due to gyrA mutations. Alterations were also found in the outer membrane protein and lipopolysaccharide profiles of the mutants, and these alterations were possibly responsible for the decrease in the permeability of the outer membrane that was observed in the mutants and that could act synergistically with active efflux to decrease the level of ciprofloxacin accumulation.


Sign in / Sign up

Export Citation Format

Share Document