scholarly journals Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Salma M. Abdelaziz ◽  
Khaled M. Aboshanab ◽  
Ibrahim S. Yahia ◽  
Mahmoud A. Yassien ◽  
Nadia A. Hassouna

In this study, the correlation between the antibiotic resistance genes and antibiotic susceptibility among the carbapenem-resistant Gram-negative pathogens (CRGNPs) recovered from patients diagnosed with acute pneumonia in Egypt was found. A total of 194 isolates including Klebsiella pneumoniae (89; 46%), Escherichia coli (47; 24%) and Pseudomonas aeruginosa (58; 30%) were recovered. Of these, 34 (18%) isolates were multiple drug resistant (MDR) and carbapenem resistant. For the K. pneumoniae MDR isolates (n = 22), blaNDM (14; 64%) was the most prevalent carbapenemase, followed by blaOXA-48 (11; 50%) and blaVIM (4; 18%). A significant association (p value < 0.05) was observed between the multidrug efflux pump (AcrA) and resistance to β-lactams and the aminoglycoside acetyl transferase gene (aac-6’-Ib) gene and resistance to ciprofloxacin, azithromycin and β-lactams (except for aztreonam). For P. aeruginosa, a significant association was noticed between the presence of the blaSHV gene and the multidrug efflux pump (MexA) and resistance to fluoroquinolones, amikacin, tobramycin, co-trimoxazole and β-lactams and between the aac-6’-Ib gene and resistance to aminoglycosides. All P. aeruginosa isolates (100%) harbored the MexAB-OprM multidrug efflux pump while 86% of the K. pneumoniae isolates harbored the AcrAB-TolC pump. Our results are of great medical importance for the guidance of healthcare practitioners for effective antibiotic prescription.

2009 ◽  
Vol 76 (4) ◽  
pp. 1095-1102 ◽  
Author(s):  
Nelly Dubarry ◽  
Wenli Du ◽  
David Lane ◽  
Franck Pasta

ABSTRACT The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.


2018 ◽  
Vol 4 (12) ◽  
pp. 2051-2057 ◽  
Author(s):  
Fuzheng Zhao ◽  
Qing Hu ◽  
Hongqiang Ren ◽  
Xu-Xiang Zhang

UV irradiation disturbs the regulatory system of efflux pump proteins to sensitize P. aeruginosa to multiple antibiotics. The increasing susceptibility to rifampicin and vancomycin might be caused by UV-mediated mutations in antibiotic resistance genes.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Shannon R. Coleman ◽  
Travis Blimkie ◽  
Reza Falsafi ◽  
Robert E. W. Hancock

ABSTRACT Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa. Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.


2008 ◽  
Vol 54 (5) ◽  
pp. 411-416 ◽  
Author(s):  
Sanela Begic ◽  
Elizabeth A. Worobec

Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance–Nodulation–Cell Division family pump with limited substrate specificity.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Christopher J. Harmer ◽  
Ruth M. Hall

ABSTRACTWe recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26from a compound transposon bounded by IS26. In arecAmutant strain, Tn4352, a kanamycin resistance transposon carrying theaphA1agene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26transposase Tnp26. However, the Tnp26 of only one IS26in Tn4352B was required, specifically the IS26downstream of theaphA1agene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352.These G residues are located immediately adjacent to the two G residues at the left end of the IS26that is upstream of theaphA1agene. Transcription oftnp26was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end.IMPORTANCEResistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26plays a major role in the acquisition and dissemination of antibiotic resistance. IS257(IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26can use a conservative movement mechanism in which an incoming IS26targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26by examining whether the reverse precise excision reaction is also catalyzed by the IS26transposase.


2021 ◽  
Vol 10 (1) ◽  
pp. 40-48
Author(s):  
O.C. Adekunle ◽  
A. Mustapha ◽  
G. Odewale ◽  
R.O. Ojedele

Introduction: Pseudomonas aeruginosa (P. aeruginosa) is a frequent nosocomial pathogen that causes severe diseases in many clinical and community settings. The objectives were to investigate the occurrence of multiple antibiotic resistant P. aeruginosa strains among clinical samples and to detect the presence of antibiotic resistance genes in the DNA molecules of the strains.Methods: Clinical specimens were collected aseptically from various human anatomical sites in five selected health institutions within Kwara State, Nigeria. Multiple drug resistance patterns of isolated micro-organisms to different antibiotics were determined using the Bauer Kirby disc diffusion technique. The DNA samples of the multiple resistant P. aeruginosa strains were extracted and subjected to Polymerase Chain Reaction (PCR) for resistance gene determination.Results: A total of 145 isolates were identified as P. aeruginosa from the clinical samples. Absolute resistance to ceftazidime, gentamicin and ceftriaxone was observed while low resistance to ciprofloxacin, piperacillin and imipenem was documented. The prevalence of bla VIM , ,bla CTX-M and blaTEM were 34.4 %, 46.7 % and 16.7 % respectively.Conclusion: This study has shown that there is a high occurrence of metallo â-lactamase- producing and antibiotic-resistant strains of P. aeruginosa in clinical specimens from the studied area. Keywords: Metallo â-lactamase enzyme, P. aeruginosa, clinical samples, antibiotic-resistance genes


2020 ◽  
Author(s):  
Hana S. Elbadawi ◽  
Kamal M. Elhag ◽  
Elsheikh Mahgoub ◽  
Hisham N Altayb ◽  
Francine Ntoumi ◽  
...  

Abstract Background:Antimicrobial resistance (AMR) poses a threat to global health security. Whilst over the past decade, there has been an increase in reports of nosocomial infections globally caused by carbapenem resistant Gram-negative bacilli (GNB), data from Africa have been scanty. We performed a study of carbapenem resistance genes among GNB isolated from patients treated in hospitals in Khartoum state, Sudan.Methods:A cross-sectional study was conducted at Soba University Hospital (SUH) and Institute of Endemic Diseases, University of Khartoum for the period October 2016 to February 2017. A total of 206 GNB isolates from different clinical specimens were analyzed for carbapenem resistance genes using phenotypic tests and affirmed by genes detection. Multiplex PCR was performed for each strain to detect the carbapenemase genes, including the blaNDM, blaVIM, blaIMP, blaKPC, and blaOXA-48. In addition to blaCTXM, blaTEM and blaSHV. DNA sequencing and bioinformatics analysis were used to detect genes subtypes.Findings:Of 206 isolates, 171 (83%) were confirmed resistant phenotypically and 121 (58.7%) isolates were positive for the presence of one or more carbapenemase gene. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(88.4%). Others included blaIMP 7 (5.7%), blaOXA-48 5(4.1%), blaVIM 2 (1.6%) and blaKPC 0 (0%). Co- resistance genes with NDM producing GNB were detected in 87 (81.3%) of all blaNDM positive isolates. A significant association between phenotypic and genotypic resistance was observed (P- value < 0.001). NDM-1 was the most sub type was observed in 75 isolates (70 %), other subtypes were NDM- 5 and NDM-6. Infections due to Carbapenem resistant GNB are increasing at SUH, with the blaNDM being the prevalent genes among clinical isolates and belong to the Indian lineage.Conclusions:The frequency of carbapenemase producing bacilli was found to be improperly high in Khartoum hospitals. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of Carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.


Sign in / Sign up

Export Citation Format

Share Document