scholarly journals Identification and functional differentiation of two type I fatty acid synthases in Brevibacterium ammoniagenes.

1996 ◽  
Vol 178 (16) ◽  
pp. 4787-4793 ◽  
Author(s):  
H P Stuible ◽  
C Wagner ◽  
I Andreou ◽  
G Huter ◽  
J Haselmann ◽  
...  
2018 ◽  
Vol 35 (10) ◽  
pp. 1046-1069 ◽  
Author(s):  
Dominik A. Herbst ◽  
Craig A. Townsend ◽  
Timm Maier

The architectures of fatty acid synthases and iterative polyketide synthases are remarkably divergent despite their related biosynthetic logics.


2004 ◽  
Vol 68 (3) ◽  
pp. 501-517 ◽  
Author(s):  
Eckhart Schweizer ◽  
Jörg Hofmann

SUMMARY The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits α and β are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.


1998 ◽  
Vol 330 (2) ◽  
pp. 933-937 ◽  
Author(s):  
J. Christopher CHILD ◽  
Peter M. SHOOLINGIN-JORDAN

Cerulenin, [(2S,3R)-2,3-epoxy-4-oxo-7,10-dodecadienoylamide], a mycotoxin produced by Cephalosporium caerulens, irreversibly inactivated 6-methylsalicylic acid synthase from Penicillium patulum. A combination of radiolabelling studies with [3H]cerulenin, proteolytic and chemical digestion and N-terminal sequencing of labelled peptides indicated that the site of cerulenin modification is the highly reactive substrate-binding Cys-204 of the β-ketoacyl synthase enzyme component. The thiol-specific inhibitor, iodoacetamide, was also shown to alkylate this residue. These findings are analogous with those observed for the reaction of cerulenin and iodoacetamide with type-I fatty acid synthases, demonstrating the close similarity between 6-methylsalicylic acid synthase and type-I fatty acid synthases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph S. Snowden ◽  
Jehad Alzahrani ◽  
Lee Sherry ◽  
Martin Stacey ◽  
David J. Rowlands ◽  
...  

AbstractType I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.


2018 ◽  
Vol 87 (1) ◽  
pp. 503-531 ◽  
Author(s):  
Shiou-Chuan (Sheryl) Tsai

Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.


2017 ◽  
Vol 13 (4) ◽  
pp. 360-362 ◽  
Author(s):  
Zhiwei Zhu ◽  
Yongjin J Zhou ◽  
Anastasia Krivoruchko ◽  
Martin Grininger ◽  
Zongbao K Zhao ◽  
...  

2005 ◽  
Vol 4 (7) ◽  
pp. 1211-1220 ◽  
Author(s):  
Xiaomin Cai ◽  
Dustin Herschap ◽  
Guan Zhu

ABSTRACT Recently, two types of fatty acid synthases (FASs) have been discovered from apicomplexan parasites. Although significant progress has been made in characterizing these apicomplexan FASs, virtually nothing was previously known about the activation and regulation of these enzymes. In this study, we report the discovery and characterization of two distinct types of phosphopantetheinyl transferase (PPTase) that are responsible for synthesizing holo-acyl carrier protein (ACP) from three apicomplexan parasites: surfactin production element (SFP) type in Cryptosporidium parvum (CpSFP-PPT), holo-ACP synthase (ACPS)-type in Plasmodium falciparum (PfACPS-PPT), and both SFP and ACPS types in Toxoplasma gondii (TgSFP-PPT and TgACPS-PPT). CpSFP-PPT and TgSFP-PPT are monofunctional, cytosolic, and phylogenetically related to animal PPTases. However, PfACPS-PPT and TgACPS-PPT are bifunctional (fused with a metal-dependent hydrolase), likely targeted to the apicoplast, and more closely related to proteobacterial PPTases. The function of apicomplexan PPTases has been confirmed by detailed functional analysis using recombinant CpSFP-PPT expressed from an artificially synthesized gene with codon usage optimized for Escherichia coli. The recombinant CpSFP-PPT was able to activate the ACP domains from the C. parvum type I FAS in vitro using either CoA or acetyl-CoA as a substrate, or in vivo when coexpressed in bacteria, with kinetic characteristics typical of PPTases. These observations suggest that the two types of fatty acid synthases in the Apicomplexa are activated and regulated by two evolutionarily distinct PPTases.


2018 ◽  
Vol 54 (82) ◽  
pp. 11606-11609 ◽  
Author(s):  
Emanuele Rossini ◽  
Jan Gajewski ◽  
Maja Klaus ◽  
Gerhard Hummer ◽  
Martin Grininger

Perturbations of domain–domain interactions impact the function of type I fatty acid synthases.


2021 ◽  
Author(s):  
Joseph S. Snowden ◽  
Jehad Alzahrani ◽  
Lee Sherry ◽  
Martin Stacey ◽  
David J. Rowlands ◽  
...  

SummaryType I fatty acid synthases (FASs) are critical metabolic enzymes which are common targets for bioengineering in the production of biofuels and other products. Serendipitously, we identified FAS as a contaminant in a cryoEM dataset of virus-like particles (VLPs) purified from P. pastoris, an important model organism and common expression system used in protein production. From these data, we determined the structure of P. pastoris FAS to 3.1 Å resolution. While the overall organisation of the complex was typical of type I FASs, we identified several differences in both structural and enzymatic domains through comparison with the prototypical yeast FAS from S. cerevisiae. Using focussed classification, we were also able to resolve and model the mobile acyl-carrier protein (ACP) domain, which is key for function. Ultimately, the structure reported here will be a useful resource for further efforts to engineer yeast FAS for synthesis of alternate products.


Sign in / Sign up

Export Citation Format

Share Document