scholarly journals Eikenella corrodens Phase Variation Involves a Posttranslational Event in Pilus Formation

1999 ◽  
Vol 181 (14) ◽  
pp. 4154-4160 ◽  
Author(s):  
Maria T. Villar ◽  
Jennifer T. Helber ◽  
Becky Hood ◽  
Michael R. Schaefer ◽  
Rona L. Hirschberg

ABSTRACT The human pathogen Eikenella corrodens synthesizes type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying the molecular basis of this phase variation in the clinical isolate E. corrodens VA1. A genomic fragment encoding the major type IV pilin was cloned from the S-phase variant of strain VA1. Sequence analysis of the fragment revealed four tandemly arranged potential open reading frames (ORFs), designatedpilA1, pilA2, pilB, andhagA. Both pilA1 and pilA2 predict a type IV pilin. The protein predicted by pilB shares sequence identity with the Dichelobacter nodosus FimB fimbrial assembly protein. The protein predicted by hagAresembles a hemagglutinin. The region containing these four ORFs was designated the pilA locus. DNA hybridization and sequence analysis showed that the pilA locus of an L-phase variant of strain VA1 was identical to that of the S-phase variant. An abundantpilA1 transcript initiating upstream of pilA1and terminating at a predicted hairpin structure betweenpilA1 and pilA2 was detected by several assays, as was a less abundant read-through transcript encompassingpilA1, pilA2, and pilB. Transcription from the pilA locus was nearly indistinguishable between S- and L-phase variants. Electron microscopy and immunochemical analysis showed that S-phase variants synthesize, export, and assemble pilin into pili. In contrast, L-phase variants synthesize pilin but do not export and assemble it into pili. These data suggest that a posttranslational event, possibly involving an alteration in pilin export and assembly, is responsible for phase variation in E. corrodens.

2001 ◽  
Vol 183 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Maria T. Villar ◽  
Rona L. Hirschberg ◽  
Michael R. Schaefer

ABSTRACT The human pathogen Eikenella corrodens expresses type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying pilus structure and function in the clinical isolateE. corrodens VA1. Earlier work defined the pilAlocus which includes pilA1, pilA2,pilB, and hagA. Both pilA1 andpilA2 predict a type IV pilin, whereas pilBpredicts a putative pilus assembly protein. The role ofhagA has not been clearly established. That work also confirmed that pilA1 encodes the major pilus protein in this strain and showed that the phase variation involves a posttranslational event in pilus formation. In this study, the function of the individual genes comprising the pilA locus was examined using a recently developed protocol for targeted interposon mutagenesis of S-phase variant VA1-S1. Different pilAmutants were compared to S-phase and L-phase variants for several distinct aspects of phase variation and type IV pilus biosynthesis and function. S-phase cells were characterized by surface pili, competence for natural transformation, and twitching motility, whereas L-phase cells lacked these features. Inactivation of pilA1 yielded a mutant that was phenotypically indistinguishable from L-phase variants, showing that native biosynthesis of the type IV pilus in strain VA1 is dependent on expression of pilA1 and proper export and assembly of PilA1. Inactivation of pilA2 yielded a mutant that was phenotypically indistinguishable from S-phase variants, indicating that pilA2 is not essential for biosynthesis of functionally normal pili. A mutant inactivated forpilB was deficient for twitching motility, suggesting a role for PilB in this pilus-related phenomenon. Inactivation ofhagA, which may encode a tellurite resistance protein, had no effect on pilus structure or function.


Microbiology ◽  
2006 ◽  
Vol 152 (3) ◽  
pp. 815-821 ◽  
Author(s):  
Hiroyuki Azakami ◽  
Hiromi Akimichi ◽  
Yuichiro Noiri ◽  
Shigeyuki Ebisu ◽  
Akio Kato

Eikenella corrodens belongs to a group of periodontopathogenic bacteria and forms unique corroding colonies on solid medium due to twitching motility. It is believed that an N-acetyl-d-galactosamine (GalNAc)-specific lectin on the cell surface contributes significantly to its pathogenicity and can be estimated by its haemagglutination (HA) activity. Recently, a plasmid, pMU1, from strain 1073 has been found; this plasmid affects pilus formation and colony morphology. To identify the gene involved in these phenomena, ORF 4 and ORFs 5–6 on pMU1 were separately subcloned into a shuttle vector, and the resultant plasmids were introduced into E. corrodens 23834. Transformants with the ORF 4 gene, which is identified to be a homologous gene of the type IV pilin gene-specific recombinase, lost their pilus structure and formed non-corroding colonies on a solid medium, whereas transformants with ORFs 5–6 exhibited the same phenotype as the host strain 23834. Southern analysis showed that the introduction of the ORF 4 gene into strain 23834 resulted in genomic recombination at the type IV pilin gene locus. The hybridization pattern of these transformants was similar to that of strain 1073. These results suggest that ORF 4 on pMU1 encodes a site-specific recombinase and causes genomic recombination of the type IV pilin gene locus. Furthermore, the introduction of ORF 4 into strain 23834 increased GalNAc-specific HA activity to a level equivalent to that of strain 1073. Although the morphological colony changes and loss of pilus structure are also observed in phase variation, genomic recombination of the type IV pilin gene locus did not occur in these variants. Moreover, an increase was not observed in the GalNAc-specific HA activity of these variants. These results suggested that the loss of pilus structure, the morphological change in colonies and the increase in HA activity due to plasmid pMU1 might be caused by a mechanism that differs from phase variation, such as a genomic recombination of the type IV pilin gene locus.


2007 ◽  
Vol 73 (5) ◽  
pp. 1612-1621 ◽  
Author(s):  
B. El Yacoubi ◽  
A. M. Brunings ◽  
Q. Yuan ◽  
S. Shankar ◽  
D. W. Gabriel

ABSTRACT Xanthomonas citri pv. citri is a clonal group of strains that causes citrus canker disease and appears to have originated in Asia. A phylogenetically distinct clonal group that causes identical disease symptoms on susceptible citrus, X. citri pv. aurantifolii, arose more recently in South America. Genomes of X. citri pv. aurantifolii strains carry two DNA fragments that hybridize to pthA, an X. citri pv. citri gene which encodes a major type III pathogenicity effector protein that is absolutely required to cause citrus canker. Marker interruption mutagenesis and complementation revealed that X. citri pv. aurantifolii strain B69 carried one functional pthA homolog, designated pthB, that was required to cause cankers on citrus. Gene pthB was found among 38 open reading frames on a 37,106-bp plasmid, designated pXcB, which was sequenced and annotated. No additional pathogenicity effectors were found on pXcB, but 11 out of 38 open reading frames appeared to encode a type IV transfer system. pXcB transferred horizontally in planta, without added selection, from B69 to a nonpathogenic X. citri pv. citri (pthA::Tn5) mutant strain, fully restoring canker. In planta transfer efficiencies were very high (>0.1%/recipient) and equivalent to those observed for agar medium with antibiotic selection, indicating that pthB conferred a strong selective advantage to the recipient strain. A single pathogenicity effector that can confer a distinct selective advantage in planta may both facilitate plasmid survival following horizontal gene transfer and account for the origination of phylogenetically distinct groups of strains causing identical disease symptoms.


2017 ◽  
Author(s):  
Hanjeong Harvey ◽  
Joseph Bondy-Denomy ◽  
Hélène Marquis ◽  
Kristina M. Sztanko ◽  
Alan R. Davidson ◽  
...  

ABSTRACTBacterial surface structures such as type IV pili are common receptors for phage. Strains of the opportunistic pathogenPseudomonas aeruginosaexpress one of five different major type IV pilin alleles, two of which are glycosylated with either lipopolysaccharide O-antigen units or polymers of D-arabinofuranose. Here we show that both these post-translational modifications protectP. aeruginosafrom a variety of pilus-specific phages. We identified a phage capable of infecting strains expressing both non-glycosylated and glycosylated pilins, and through construction of a chimeric phage, traced this ability to its unique tail proteins. Alteration of pilin sequence, or masking of binding sites by glycosylation, both block phage infection. The energy invested by prokaryotes in glycosylating thousands of pilin subunits is thus explained by the protection against phage predation provided by these common decorations.SIGNIFICANCEPost-translational modification of bacterial and archaeal surface structures such as pili and flagella is widespread, but the function of these decorations is not clear. We propose that predation by bacteriophages that use these structures as receptors selects for strains that mask potential phage binding sites using glycosylation. Phages are of significant interest as alternative treatments for antibiotic-resistant pathogens, but the ways in which phage interact with host receptors are not well understood. We show that specific phage tail proteins allow for infection of strains with glycosylated pili, providing a foundation for the creation of designer phages that can circumvent first-line bacterial defenses.


2001 ◽  
Vol 69 (11) ◽  
pp. 6893-6901 ◽  
Author(s):  
Anita C. Wright ◽  
Jan L. Powell ◽  
James B. Kaper ◽  
J. Glenn Morris

ABSTRACT Virulence of Vibrio vulnificus correlates with changes in colony morphology that are indicative of a reversible phase variation for expression of capsular polysaccharide (CPS). Encapsulated variants are virulent with opaque colonies, whereas phase variants with reduced CPS expression are attenuated and are translucent. Using TnphoA mutagenesis, we identified a V.vulnificus CPS locus, which included an upstreamops element, a wza gene (wza Vv), and several open reading frames with homology to CPS biosynthetic genes. This genetic organization is characteristic of group 1 CPS operons. The wzagene product is required for transport of CPS to the cell surface inEscherichia coli. Polar transposon mutations inwza Vv eliminated expression of downstream biosynthetic genes, confirming operon structure. On the other hand, nonpolar inactivation of wza Vv was specific for CPS transport, did not alter CPS biosynthesis, and could be complemented in trans. Southern analysis of CPS phase variants revealed deletions or rearrangements at this locus. A survey of environmental isolates indicated a correlation between deletions inwza Vv and loss of virulent phenotype, suggesting a genetic mechanism for CPS phase variation. Full virulence in mice required surface expression of CPS and supported the essential role of capsule in the pathogenesis of V.vulnificus.


1998 ◽  
Vol 180 (23) ◽  
pp. 6164-6172 ◽  
Author(s):  
Pei-Li Li ◽  
Dawn M. Everhart ◽  
Stephen K. Farrand

ABSTRACT Conjugal transfer of pTiC58 requires two regions, trawhich contains the oriT and several genes involved in DNA processing and a region of undefined size and function that is located at the 2-o’clock position of the plasmid. Using transposon mutagenesis with Tn3HoHo1 and a binary transfer system, we delimited this second region, called trb, to an 11-kb interval between the loci for vegetative replication and nopaline catabolism. DNA sequence analysis of this region identified 13 significant open reading frames (ORFs) spanning 11,003 bp. The first, encodingtraI, already has been described and is responsible for the synthesis of Agrobacterium autoinducer (AAI) (I. Hwang, P.-L. Li, L. Zhang, K. R. Piper, D. M. Cook, M. E. Tate, and S. K. Farrand, Proc. Natl. Acad. Sci. USA 91:4639–4643, 1994). Translation products of the next 11 ORFs showed similarities to those of trbB, -C, -D,-E, -J, -K, -L,-F, -G, -H, and -I of the trb region of the octopine-type Ti plasmid pTi15955 and of the tra2 core region of RP4. In RP4, these genes encode mating-pair formation functions and are essential for the conjugal transfer of the IncP plasmid. Each of the trb gene homologues is oriented counterclockwise on the Ti plasmid. Expression of these genes, as measured by using the lacZ fusions formed by Tn3HoHo1, required the traI promoter and the transcriptional activator TraR along with its coinducer, AAI. While related to that of RP4, the trb system of pTiC58 did not allow propagation of the trb-specific bacteriophages PRD1, PRR1, and Pf3. The products of several trb genes of the Ti plasmid are similar to those of other loci that encode DNA transfer or protein secretion systems, all of which are members of the type IV secretion family.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 417-426
Author(s):  
Richard W Beeman ◽  
M Scott Thomson ◽  
John M Clark ◽  
Marco A DeCamillis ◽  
Susan J Brown ◽  
...  

Abstract A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.


2020 ◽  
Vol 202 (20) ◽  
Author(s):  
Derek R. Lovley ◽  
Dawn E. Holmes

ABSTRACT Electrically conductive protein nanowires appear to be widespread in the microbial world and are a revolutionary “green” material for the fabrication of electronic devices. Electrically conductive pili (e-pili) assembled from type IV pilin monomers have independently evolved multiple times in microbial history as have electrically conductive archaella (e-archaella) assembled from homologous archaellin monomers. A role for e-pili in long-range (micrometer) extracellular electron transport has been demonstrated in some microbes. The surprising finding of e-pili in syntrophic bacteria and the role of e-pili as conduits for direct interspecies electron transfer have necessitated a reassessment of routes for electron flux in important methanogenic environments, such as anaerobic digesters and terrestrial wetlands. Pilin monomers similar to those found in e-pili may also be a major building block of the conductive “cables” that transport electrons over centimeter distances through continuous filaments of cable bacteria consisting of a thousand cells or more. Protein nanowires harvested from microbes have many functional and sustainability advantages over traditional nanowire materials and have already yielded novel electronic devices for sustainable electricity production, neuromorphic memory, and sensing. e-pili can be mass produced with an Escherichia coli chassis, providing a ready source of material for electronics as well as for studies on the basic mechanisms for long-range electron transport along protein nanowires. Continued exploration is required to better understand the electrification of microbial communities with microbial nanowires and to expand the “green toolbox” of sustainable materials for wiring and powering the emerging “Internet of things.”


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Emily A. Sansevere ◽  
Xiao Luo ◽  
Joo Youn Park ◽  
Sunghyun Yoon ◽  
Keun Seok Seo ◽  
...  

ABSTRACT ICE6013 represents one of two families of integrative conjugative elements (ICEs) identified in the pan-genome of the human and animal pathogen Staphylococcus aureus. Here we investigated the excision and conjugation functions of ICE6013 and further characterized the diversity of this element. ICE6013 excision was not significantly affected by growth, temperature, pH, or UV exposure and did not depend on recA. The IS30-like DDE transposase (Tpase; encoded by orf1 and orf2) of ICE6013 must be uninterrupted for excision to occur, whereas disrupting three of the other open reading frames (ORFs) on the element significantly affects the level of excision. We demonstrate that ICE6013 conjugatively transfers to different S. aureus backgrounds at frequencies approaching that of the conjugative plasmid pGO1. We found that excision is required for conjugation, that not all S. aureus backgrounds are successful recipients, and that transconjugants acquire the ability to transfer ICE6013. Sequencing of chromosomal integration sites in serially passaged transconjugants revealed a significant integration site preference for a 15-bp AT-rich palindromic consensus sequence, which surrounds the 3-bp target site that is duplicated upon integration. A sequence analysis of ICE6013 from different host strains of S. aureus and from eight other species of staphylococci identified seven divergent subfamilies of ICE6013 that include sequences previously classified as a transposon, a plasmid, and various ICEs. In summary, these results indicate that the IS30-like Tpase functions as the ICE6013 recombinase and that ICE6013 represents a diverse family of mobile genetic elements that mediate conjugation in staphylococci. IMPORTANCE Integrative conjugative elements (ICEs) encode the abilities to integrate into and excise from bacterial chromosomes and plasmids and mediate conjugation between bacteria. As agents of horizontal gene transfer, ICEs may affect bacterial evolution. ICE6013 represents one of two known families of ICEs in the pathogen Staphylococcus aureus, but its core functions of excision and conjugation are not well studied. Here, we show that ICE6013 depends on its IS30-like DDE transposase for excision, which is unique among ICEs, and we demonstrate the conjugative transfer and integration site preference of ICE6013. A sequence analysis revealed that ICE6013 has diverged into seven subfamilies that are dispersed among staphylococci.


Sign in / Sign up

Export Citation Format

Share Document