scholarly journals Visualization of Repair of Double-Strand Breaks in the Bacteriophage T7 Genome without Normal DNA Replication

2000 ◽  
Vol 182 (2) ◽  
pp. 327-336 ◽  
Author(s):  
Ying-Ta Lai ◽  
Warren Masker

ABSTRACT An in vitro system based on extracts of Escherichia coli infected with bacteriophage T7 is able to repair double-strand breaks in a T7 genome with efficiencies of 20% or more. To achieve this high repair efficiency it is necessary that the reaction mixtures contain molecules of donor DNA that bracket the double-strand break. Gaps as long as 1,600 nucleotides are repaired almost as efficiently as simple double-strand breaks. DNA synthesis was measured while repair was taking place. It was found that the amount of DNA synthesis associated with repair of a double-strand break was below the level of detection possible with this system. Furthermore, repair efficiencies were the same with or without normal levels of T7 DNA polymerase. However, the repair required the 5′→3′ exonuclease encoded by T7 gene 6. The high efficiency of DNA repair allowed visualization of the repaired product after in vitro repair, thereby assuring that the repair took place in vitro rather than during an in vivo growth step after packaging.

1998 ◽  
Vol 180 (23) ◽  
pp. 6193-6202 ◽  
Author(s):  
Ying-Ta Lai ◽  
Warren Masker

ABSTRACT An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to study the mechanism of double-strand break repair. Double-strand breaks were placed in T7 genomes by cutting with a restriction endonuclease which recognizes a unique site in the T7 genome. These molecules were allowed to repair under conditions where the double-strand break could be healed by (i) direct joining of the two partial genomes resulting from the break, (ii) annealing of complementary versions of 17-bp sequences repeated on either side of the break, or (iii) recombination with intact T7 DNA molecules. The data show that while direct joining and single-strand annealing contributed to repair of double-strand breaks, these mechanisms made only minor contributions. The efficiency of repair was greatly enhanced when DNA molecules that bridge the region of the double-strand break (referred to as donor DNA) were provided in the reaction mixtures. Moreover, in the presence of the donor DNA most of the repaired molecules acquired genetic markers from the donor DNA, implying that recombination between the DNA molecules was instrumental in repairing the break. Double-strand break repair in this system is highly efficient, with more than 50% of the broken molecules being repaired within 30 min under some experimental conditions. Gaps of 1,600 nucleotides were repaired nearly as well as simple double-strand breaks. Perfect homology between the DNA sequence near the break site and the donor DNA resulted in minor (twofold) improvement in the efficiency of repair. However, double-strand break repair was still highly efficient when there were inhomogeneities between the ends created by the double-strand break and the T7 genome or between the ends of the donor DNA molecules and the genome. The distance between the double-strand break and the ends of the donor DNA molecule was critical to the repair efficiency. The data argue that ends of DNA molecules formed by double-strand breaks are typically digested by between 150 and 500 nucleotides to form a gap that is subsequently repaired by recombination with other DNA molecules present in the same reaction mixture or infected cell.


2000 ◽  
Vol 20 (21) ◽  
pp. 8059-8068 ◽  
Author(s):  
Chonghui Cheng ◽  
Stewart Shuman

ABSTRACT Topoisomerase IB catalyzes recombinogenic DNA strand transfer reactions in vitro and in vivo. Here we characterize a new pathway of topoisomerase-mediated DNA ligation in vitro (flap ligation) in which vaccinia virus topoisomerase bound to a blunt-end DNA joins the covalently held strand to a 5′ resected end of a duplex DNA containing a 3′ tail. The joining reaction occurs with high efficiency when the sequence of the 3′ tail is complementary to that of the scissile strand immediately 5′ of the cleavage site. A 6-nucleotide segment of complementarity suffices for efficient flap ligation. Invasion of the flap into the duplex apparently occurs while topoisomerase remains bound to DNA, thereby implying a conformational flexibility of the topoisomerase clamp around the DNA target site. The 3′ flap acceptor DNA mimics a processed end in the double-strand-break-repair recombination pathway. Our findings suggest that topoisomerase-induced breaks may be rectified by flap ligation, with ensuing genomic deletions or translocations.


2020 ◽  
Vol 48 (15) ◽  
pp. 8490-8508 ◽  
Author(s):  
Sarah S Henrikus ◽  
Camille Henry ◽  
Amy E McGrath ◽  
Slobodan Jergic ◽  
John P McDonald ◽  
...  

Abstract Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.


1986 ◽  
Vol 6 (11) ◽  
pp. 3831-3837 ◽  
Author(s):  
M Jayaram

Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.


2005 ◽  
Vol 25 (14) ◽  
pp. 5904-5919 ◽  
Author(s):  
Sathees C. Raghavan ◽  
Patrick C. Swanson ◽  
Yunmei Ma ◽  
Michael R. Lieber

ABSTRACT The most common chromosomal translocation in cancer, t(14;18) at the 150-bp bcl-2 major breakpoint region (Mbr), occurs in follicular lymphomas. The bcl-2 Mbr assumes a non-B DNA conformation, thus explaining its distinctive fragility. This non-B DNA structure is a target of the RAG complex in vivo, but not because of its primary sequence. Here we report that the RAG complex generates at least two independent nicks that lead to double-strand breaks in vitro, and this requires the non-B DNA structure at the bcl-2 Mbr. A 3-bp mutation is capable of abolishing the non-B structure formation and the double-strand breaks. The observations on the bcl-2 Mbr reflect more general properties of the RAG complex, which can bind and nick at duplex-single-strand transitions of other non-B DNA structures, resulting in double-strand breaks in vitro. Hence, the present study reveals novel insight into a third mechanism of action of RAGs on DNA, besides the standard heptamer/nonamer-mediated cleavage in V(D)J recombination and the in vitro transposase activity.


2017 ◽  
Vol 51 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Jakob Liermann ◽  
Patrick Naumann ◽  
Franco Fortunato ◽  
Thomas E. Schmid ◽  
Klaus-Josef Weber ◽  
...  

Abstract Background Chemoradiation of locally advanced non-metastatic pancreatic cancer can lead to secondary operability by tumor mass reduction. Here, we analyzed radiomodulating effects of oridonin and ponicidin in pancreatic cancer in vitro. Both agents are ent-kaurane diterpenoids, extracted from Isodon rubescens, a plant that is well known in Traditional Chinese Medicine. Cytotoxic effects have recently been shown in different tumor entities for both agents. Materials and methods Pancreatic cancer cell lines AsPC-1, BxPC-3, Panc-1 and MIA PaCa-2 were pretreated with oridonin or ponicidin and irradiated with 2 Gy to 6 Gy. Long-term survival was determined by clonogenic assay. Cell cycle effects and intensity of γH2AX as indicator for DNA double-strand breaks were investigated by flow cytometry. Western blotting was used to study the DNA double-strand break repair proteins Ku70, Ku80 and XRCC4. Results Oridonin and ponicidin lead to a dose-dependent reduction of clonogenic survival and an increase in γH2AX. Combined with irradiation we observed additive effects and a prolonged G2/M-arrest. No relevant changes in the levels of the DNA double-strand break repair proteins were detected. Conclusions Pretreatment with oridonin or ponicidin followed by irradiation lead to an additional reduction in survival of pancreatic cancer cells in vitro, presumably explained by an induced prolonged G2/M-arrest. Both agents seem to induce DNA double-strand breaks but do not interact with the non-homologous end joining (NHEJ) pathway.


2001 ◽  
Vol 183 (6) ◽  
pp. 1862-1869 ◽  
Author(s):  
Man Yu ◽  
Warren Masker

ABSTRACT An in vitro system based on Escherichia coliinfected with bacteriophage T7 was used to test for involvement of host and phage recombination proteins in the repair of double strand breaks in the T7 genome. Double strand breaks were placed in a uniqueXhoI site located approximately 17% from the left end of the T7 genome. In one assay, repair of these breaks was followed by packaging DNA recovered from repair reactions and determining the yield of infective phage. In a second assay, the product of the reactions was visualized after electrophoresis to estimate the extent to which the double strand breaks had been closed. Earlier work demonstrated that in this system double strand break repair takes place via incorporation of a patch of DNA into a gap formed at the break site. In the present study, it was found that extracts prepared from uninfected E. coli were unable to repair broken T7 genomes in this in vitro system, thus implying that phage rather than host enzymes are the primary participants in the predominant repair mechanism. Extracts prepared from an E. coli recA mutant were as capable of double strand break repair as extracts from a wild-type host, arguing that the E. coli recombinase is not essential to the recombinational events required for double strand break repair. In T7 strand exchange during recombination is mediated by the combined action of the helicase encoded by gene 4 and the annealing function of the gene 2.5 single strand binding protein. Although a deficiency in the gene 2.5 protein blocked double strand break repair, a gene 4 deficiency had no effect. This argues that a strand transfer step is not required during recombinational repair of double strand breaks in T7 but that the ability of the gene 2.5 protein to facilitate annealing of complementary single strands of DNA is critical to repair of double strand breaks in T7.


1986 ◽  
Vol 6 (11) ◽  
pp. 3831-3837
Author(s):  
M Jayaram

Double-strand breaks in DNA are known to promote recombination in Saccharomyces cerevisiae. Yeast mating type switching, which is a highly efficient gene conversion event, is apparently initiated by a site-specific double-strand break. The 2 micrograms circle site-specific recombinase, FLP, has been shown to make double-strand breaks in its substrate DNA. By using a hybrid 2 micrograms circle::Tn5 plasmid, a portion of which resembles, in its DNA organization, the active (MAT) and the silent (HML) yeast mating type loci, it is shown that FLP mediates a conversion event analogous to mating type switching. Whereas the FLP site-specific recombination is not dependent on the RAD52 gene product, the FLP-induced conversion is abolished in a rad52 background. The FLP-promoted conversion in vivo can be faithfully reproduced by making a double-stranded gap in vitro in the vicinity of the FLP site and allowing the gap to be repaired in vivo.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 543-556
Author(s):  
Victor Shcherbakov ◽  
Igor Granovsky ◽  
Lidiya Plugina ◽  
Tamara Shcherbakova ◽  
Svetlana Sizova ◽  
...  

Abstract A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCΔ strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC+ conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC+) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4578-4587 ◽  
Author(s):  
Victoria J. Weston ◽  
Ceri E. Oldreive ◽  
Anna Skowronska ◽  
David G. Oscier ◽  
Guy Pratt ◽  
...  

Abstract The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.


Sign in / Sign up

Export Citation Format

Share Document