breakpoint region
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 6)

H-INDEX

25
(FIVE YEARS 0)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Natalya A. Lemskaya ◽  
Svetlana A. Romanenko ◽  
Mariia A. Rezakova ◽  
Elena A. Filimonova ◽  
Dmitry Yu. Prokopov ◽  
...  

Abstract Background There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader–Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. Case presentation We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child’s magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother’s brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. Conclusions We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes.


NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Taylor R Nicholas ◽  
Stephanie A Metcalf ◽  
Benjamin M Greulich ◽  
Peter C Hollenhorst

Abstract Ewing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5′ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5′ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5′ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to either early transcription termination, or breakpoint formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michele Massimino ◽  
Elena Tirrò ◽  
Stefania Stella ◽  
Livia Manzella ◽  
Maria Stella Pennisi ◽  
...  

Chronic Myeloid Leukemia (CML) is a hematological disorder characterized by the clonal expansion of a hematopoietic stem cell carrying the Philadelphia chromosome that juxtaposes the BCR and ABL1 genes. The ensuing BCR-ABL1 chimeric oncogene is characterized by a breakpoint region that generally involves exons 1, 13 or 14 in BCR and exon 2 in ABL1. Additional breakpoint regions, generating uncommon BCR-ABL1 fusion transcripts, have been detected in various CML patients. However, to date, the impact of these infrequent transcripts on BCR-ABL1-dependent leukemogenesis and sensitivity to tyrosine kinase inhibitors (TKIs) remain unclear. We analyzed the transforming potential and TKIs responsiveness of three atypical BCR-ABL1 fusions identified in CML patients, and of two additional BCR-ABL1 constructs with lab-engineered breakpoints. We observed that modifications in the DC2 domain of BCR and SH3 region of ABL1 affect BCR-ABL1 catalytic efficiency and leukemogenic ability. Moreover, employing immortalized cell lines and primary CD34-positive progenitors, we demonstrate that these modifications lead to reduced BCR-ABL1 sensitivity to imatinib, dasatinib and ponatinib but not nilotinib. We conclude that BCR-ABL1 oncoproteins displaying uncommon breakpoints involving the DC2 and SH3 domains are successfully inhibited by nilotinib treatment.


2020 ◽  
Author(s):  
Taylor R. Nicholas ◽  
Peter C. Hollenhorst

SummaryEwing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5’ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5’ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5’ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to early transcription termination and breakpoint formation.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Yiping Wang ◽  
Emily R. Feldman ◽  
Whitney L. Bullard ◽  
Scott A. Tibbetts

ABSTRACT Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies, including B cell lymphomas. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong latent infection. To accomplish this, gammaherpesviruses employ an array of gene products, including microRNAs (miRNAs). Although numerous host mRNA targets of gammaherpesvirus miRNAs have been identified, the in vivo relevance of repression of these targets remains elusive due to species restriction. Murine gammaherpesvirus 68 (MHV68) provides a robust virus-host system to dissect the in vivo function of conserved gammaherpesvirus genetic elements. We identified here MHV68 mghv-miR-M1-7-5p as critical for in vivo infection and then validated host EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using novel, target-specific shRNA-expressing viruses, we determined that EWSR1 repression in vivo was essential for germinal center B cell infection. These findings provide the first in vivo demonstration of the biological significance of repression of a specific host mRNA by a gammaherpesvirus miRNA. IMPORTANCE Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), directly contribute to the genesis of multiple types of malignancies. In vivo, these viruses infect B cells and manipulate B cell biology to establish lifelong infection. To accomplish this, gammaherpesviruses employ an array of gene products, including miRNAs, short noncoding RNAs that bind to and repress protein synthesis from specific target mRNAs. The in vivo relevance of repression of targets of gammaherpesvirus miRNAs remains highly elusive. Here, we identified a murine gammaherpesvirus miRNA as critical for in vivo infection and validated the host mRNA EWSR1 (Ewing sarcoma breakpoint region 1) as the predominant target for this miRNA. Using a novel technology, we demonstrated that repression of EWSR1 was essential for in vivo infection of the critical B cell reservoir. These findings provide the first in vivo demonstration of the significance of repression of a specific host mRNA by a gammaherpesvirus miRNA.


2016 ◽  
Vol 69 (6) ◽  
pp. 1000-1011 ◽  
Author(s):  
A Cristina Vargas ◽  
Christina I Selinger ◽  
Laveniya Satgunaseelan ◽  
Wendy A Cooper ◽  
Ruta Gupta ◽  
...  

2016 ◽  
Vol 25 (17) ◽  
pp. 3754-3767 ◽  
Author(s):  
Xingyi Guo ◽  
Maria Delio ◽  
Nousin Haque ◽  
Raquel Castellanos ◽  
Matthew S. Hestand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document