scholarly journals Iron-Dependent Transcription of the frpB Gene ofHelicobacter pylori Is Controlled by the Fur Repressor Protein

2001 ◽  
Vol 183 (16) ◽  
pp. 4932-4937 ◽  
Author(s):  
Isabel Delany ◽  
Ana Beatriz F. Pacheco ◽  
Gunther Spohn ◽  
Rino Rappuoli ◽  
Vincenzo Scarlato

ABSTRACT We have overexpressed and purified the Helicobacter pylori Fur protein and analyzed its interaction with the intergenic regions of divergent genes involved in iron uptake (frpB and ceuE) and oxygen radical detoxification (katA and tsaA). DNase I footprint analysis showed that Fur binds specifically to a high-affinity site overlapping theP frpB promoter and to low-affinity sites located upstream from promoters within both thefrpB-katA and ceuE-tsaA intergenic regions. Construction of an isogenic fur mutant indicated that Fur regulates transcription from the P frpB promoter in response to iron. In contrast, no effect by either Fur or iron was observed for the other promoters.

2003 ◽  
Vol 185 (16) ◽  
pp. 4748-4754 ◽  
Author(s):  
Daniel H. Broder ◽  
Charles G. Miller

ABSTRACT Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn2+. Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn2+-dependent peptidase is DapE (N-succinyl-l,l-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His6). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn2+-dependent aspartyl peptidase activity relative to the MPD dapE+ strain. In addition, purified DapE-His6 exhibited Mn2+-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn2+ in the high-affinity site and Mn2+ in the low-affinity site.


1989 ◽  
Vol 121 (3) ◽  
pp. 585-591 ◽  
Author(s):  
K. Yamauchi ◽  
R. Horiuchi ◽  
H. Takikawa

ABSTRACT The mechanisms of 3,5,3′-l-tri-iodothyronine (T3) uptake into human erythrocytes were examined. Purified membranes of human erythrocytes were shown to have two classes of T3-binding sites with one being a high-affinity site (dissociation constant, 59·2±17·8 nmol/l; maximum binding capacity, 344·3 ± 95·5 fmol/μg protein). Furthermore, it was shown that there were two pathways for T3 uptake in human erythrocytes; one was saturable, stereospecific (T3»thyroxine > 3,5,3′-d-tri-iodothyronine), energydependent and dominant at 15 °C; the other was not displaced by unlabelled T3 and was energyindependent but did not occur by passive diffusion. The former pathway which, it is suggested, is a receptor-mediated transport pathway, was inhibited by monodansylcadaverine, phloretin or oligomycin at 15 or 37 °C, but the latter pathway was not inhibited by these inhibitors. Our results strongly suggest that uptake of T3 by the energy-independent pathway became predominant over the energy-dependent pathway at 37 °C and accounted for 83% of total T3 uptake of human erythrocytes. Journal of Endocrinology (1989) 121, 585–591


1987 ◽  
Vol 65 (1) ◽  
pp. 18-22 ◽  
Author(s):  
I. Takayanagi ◽  
K. Koike ◽  
A. Nakagoshi

Interactions of derivatives of befunolol (BFE-37, BFE-55, and BFE-61), carteolol, and pindolol with β-adrenoceptors were tested in guinea pig isolated taenia caecum. All the drugs used acted as partial agonists on the β-adrenoceptors when compared with isoprenaline, a full agonist. The pA2 values of BFE-61, carteolol, and pindolol were significantly larger than their pD2 values, while there was no significant difference between the pA2 and pD2 values for BFE-37 and BFE-55. The specific binding of [3H]befunolol to microsomal fractions from the guinea pig taenia caecum distinguished two binding sites, high affinity and low affinity sites. Both sites are considered to be bound by 50 nM of [3H]befunolol. Specific 3H binding was displaced by BFE-61, carteolol, and pindolol in a biphasic manner but in a monophasic manner by BFE-37 and BFE-55. Furthermore, [3H]befunolol binding was only partially displaced by BFE-55 but completely displaced by the other drugs used. These results, together with our previous findings, suggest that BFE-61, carteolol, and pindolol discriminate between the two affinity binding sites in the β-adrenoceptors, which are not discriminated between by BFE-37, and further that BFE-55 may bind with only the high affinity site.


2000 ◽  
Vol 118 (4) ◽  
pp. A735
Author(s):  
Arnoud H. van Vliet ◽  
Stefan Bereswill ◽  
Nicolette de Vries ◽  
Ernst J. Kuipers ◽  
Manfred Kist ◽  
...  

1980 ◽  
Vol 58 (10) ◽  
pp. 969-977 ◽  
Author(s):  
P. Nicholls ◽  
V. Hildebrandt ◽  
B. C. Hill ◽  
F. Nicholls ◽  
J. M. Wrigglesworth

In media of low ionic strength, membraneous cytochrome c oxidase, isolated cytochrome c oxidase, and proteoliposomal cytochrome c oxidase each bind cytochrome c at two sites, one of low affinity (1 μM > Kd′ > 0.2 μM) and readily reversible and the other of high affinity (0.01 μM > Kd) and weakly reversible. When cytochrome c occupies both sites, including the low affinity site, the maximal turnover measured polarographically with ascorbate and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) is independent of TMPD concentration, and lies between 250 and 400 s−1 (30 °C, pH 7.4) for fully activated systems. The apparent affinity of the enzyme for cytochrome c is, however, TMPD dependent. When cytochrome c occupies only the high-affinity site, the maximal turnover is closely dependent upon the concentration of TMPD, which, unlike ascorbate, can reduce bound cytochrome c. As TMPD concentration is increased, the maximal turnover approaches that seen when both sites are occupied. The lower activity of isolated cytochrome aa3 is due to the presence of inactive or inaccessible enzyme molecules. Incorporation of isolated enzyme into phospholipid vesicles restores full activity to all the subsequently accessible cytochrome aa3 molecules. Negatively charged (asolectin) vesicles show a higher cytochrome c affinity at the low-affinity sites than do the other enzyme preparations. A model for the cytochrome c – cytochrome aa3 complexes is put forward in which both sites, when occupied, are fully catalytically competent, but in which occupation of the "tight" site by a catalytically functional cytochrome c molecule is required for overall oxidation of cytochrome c via the "loose" site.


1979 ◽  
Author(s):  
E.J. McKay

Depressed Antithrombin III (AT) levels Increase thrombic tendency in man, therefore value in assaying this protein has been established. Immunochemical analysis of AT in clinical disease has however proved controversial, consequently systematic studies were undertaken to rationalize the requirements necessary to optimise these methods in particular electro-Immunoassay. The known binding affinity of AT for heparin has been exploited to differentiate high affinity AT from its inhibitor - protease complexes and has resulted in reports stating that heparin added to the agar gel prior to electrophoresis significantly reduces the time required for completion of antigen/antibody complexes. Our studies however have demonstrated that the antibody required for quantitative analysis must be capable of not only reacting with “native” antigenic determinants of AT but also with “neo” antigens that are exposed when inhibitor-protease complexes are formed. Heparin should not be used in the test protocol, for it has a paradoxical effect on Immunopreclpltation in gels, masking some antigenic determinants of unbound - high affinity AT on one hand, and appear to disrupt the Immunoprecipitin “rocket” formed with the inhibitor-protease complexes during electrophoresis on the other.


1992 ◽  
Vol 262 (2) ◽  
pp. G244-G248 ◽  
Author(s):  
C. Asher ◽  
D. Singer ◽  
R. Eren ◽  
O. Yeger ◽  
N. Dascal ◽  
...  

RNA was isolated from chicken lower intestine (both colon and coprodeum) and injected into Xenopus oocytes. 22Na+ fluxes measured after 1-4 days demonstrated the induction of an amiloride-blockable pathway. The Na+ transporter expressed by the exogenous RNA had a high affinity to amiloride (inhibitory constant less than 0.1 microM), but was insensitive to ethylisopropyl amiloride, i.e., it is likely to be the apical Na+ channel. Functional channels were readily expressed in oocytes injected with RNA derived from chickens fed a low-NaCl diet. On the other hand, no channel activity was detected in oocytes injected with RNA isolated from chickens fed a high-NaCl diet. Thus the previously reported regulation of transport by the dietary NaCl intake involves modulations in the level of mRNA that codes either for the Na+ channel or a posttranscriptional regulator of the channel.


Sign in / Sign up

Export Citation Format

Share Document