scholarly journals Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa

2001 ◽  
Vol 183 (18) ◽  
pp. 5213-5222 ◽  
Author(s):  
Thilo Köhler ◽  
Christian van Delden ◽  
Lasta Kocjancic Curty ◽  
Mehri Michea Hamzehpour ◽  
Jean-Claude Pechere

ABSTRACT Intrinsic and acquired antibiotic resistance of the nosocomial pathogen Pseudomonas aeruginosa is mediated mainly by the expression of several efflux pumps of broad substrate specificity. Here we report that nfxC type mutants, overexpressing the MexEF-OprN efflux system, produce lower levels of extracellular virulence factors than the susceptible wild type. These include pyocyanin, elastase, and rhamnolipids, three factors controlled by the las and rhl quorum-sensing systems of P. aeruginosa. In agreement with these observations are the decreased transcription of the elastase genelasB and the rhamnosyltransferase genesrhlAB measured in nfxC type mutants. Expression of the lasR and rhlR regulator genes was not affected in the nfxC type mutant. In contrast, transcription of the C4-homoserine lactone (C4-HSL) autoinducer synthase gene rhlI was reduced by 50% in the nfxC type mutant relative to that in the wild type. This correlates with a similar decrease in C4-HSL levels detected in supernatants of the nfxC type mutant. Transcription of an rhlAB-lacZ fusion could be partially restored by the addition of synthetic C4-HSL andPseudomonas quinolone signal (PQS). It is proposed that the MexEF-OprN efflux pump affects intracellular PQS levels.

1996 ◽  
Vol 40 (10) ◽  
pp. 2288-2290 ◽  
Author(s):  
T Köhler ◽  
M Kok ◽  
M Michea-Hamzehpour ◽  
P Plesiat ◽  
N Gotoh ◽  
...  

Pseudomonas aeruginosa possesses at least two multiple drug efflux systems which are defined by the outer membrane proteins OprM and OprJ. We have found that mutants overexpressing OprM were two- and eightfold more resistant than their wild-type parent to sulfamethoxazole (SMX) and trimethoprim (TMP), respectively. For OprJ-overproducing strains, MICs of TMP increased fourfold but those of SMX were unchanged. Strains overexpressing OprM, but not those overexpressing OprJ, became hypersusceptible to TMP and SMX when oprM was inactivated. The wild-type antibiotic profile could be restored in an oprM mutant by transcomplementation with the cloned oprM gene. These results demonstrate that the mexABoprM multidrug efflux system is mainly responsible for the intrinsic resistance of P. aeruginosa to TMP and SMX.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


2006 ◽  
Vol 50 (4) ◽  
pp. 1347-1351 ◽  
Author(s):  
Didier Hocquet ◽  
Patrice Nordmann ◽  
Farid El Garch ◽  
Ludovic Cabanne ◽  
Patrick Plésiat

ABSTRACT Cefepime (FEP) and ceftazidime (CAZ) are potent β-lactam antibiotics with similar MICs (1 to 2 μg/ml) for wild-type strains of Pseudomonas aeruginosa. However, recent epidemiological studies have highlighted the occurrence of isolates more resistant to FEP than to CAZ (FEPr/CAZs profile). We thus investigated the mechanisms conferring such a phenotype in 38 clonally unrelated strains collected in two French teaching hospitals. Most of the bacteria (n = 32; 84%) appeared to stably overexpress the mexY gene, which codes for the RND transporter of the multidrug efflux system MexXY-OprM. MexXY up-regulation was the sole FEP resistance mechanism identified (n = 12) or was associated with increased levels of pump MexAB-OprM (n = 5) or MexJK (n = 2), synthesis of secondary β-lactamase PSE-1 (n = 10), derepression of cephalosporinase AmpC (n = 1), coexpression of both OXA-35 and MexJK (n = 1), or production of both PSE-1 and MexAB-OprM (n = 1). Down-regulation of the mexXY operon in seven selected strains by the plasmid-borne repressor gene mexZ decreased FEP resistance from two- to eightfold, thereby demonstrating the significant contribution of MexXY-OprM to the FEPr/CAZs phenotype. The six isolates of this series that exhibited wild-type levels of the mexY gene were found to produce β-lactamase PSE-1 (n = 1), OXA-35 (n = 4), or both PSE-1 and OXA-35 (n = 1). Altogether, these data provide evidence that MexXY-OprM plays a major role in the development of FEP resistance among clinical strains of P. aeruginosa.


2015 ◽  
Vol 59 (12) ◽  
pp. 7276-7289 ◽  
Author(s):  
Keith Poole ◽  
Calvin Ho-Fung Lau ◽  
Christie Gilmour ◽  
Youai Hao ◽  
Joseph S. Lam

ABSTRACTThe ribosome-targeting antimicrobial, spectinomycin (SPC), strongly induced themexXYgenes of the MexXY-OprM multidrug efflux system inPseudomonas aeruginosaand increased susceptibility to the polycationic antimicrobials polymyxin B and polymyxin E, concomitant with a decrease in expression of the polymyxin resistance-promoting lipopolysaccharide (LPS) modification loci,arnBCADTEFand PA4773-74. Consistent with the SPC-promoted reduction inarnand PA4773-74 expression being linked tomexXY, expression of these LPS modification loci was moderated in a mutant constitutively expressingmexXYand enhanced in a mutant lacking the efflux genes. Still, the SPC-mediated increase in polymyxin susceptibility was retained in mutants lackingarnBand/or PA4773-74, an indication that their reduced expression in SPC-treated cells does not explain the enhanced polymyxin susceptibility. That the polymyxin susceptibility of a mutant strain lackingmexXYwas unaffected by SPC exposure, however, was an indication that the unknown polymyxin resistance ‘mechanism’ is also influenced by the MexXY status of the cell. In agreement with SPC and MexXY influencing polymyxin susceptibility as a result of changes in the LPS target of these agents, SPC treatment yielded a decline in common polysaccharide antigen (CPA) synthesis in wild-typeP. aeruginosabut not in the ΔmexXYmutant. A mutant lacking CPA still showed the SPC-mediated decline in polymyxin MICs, however, indicating that the loss of CPA did not explain the SPC-mediated MexXY-dependent increase in polymyxin susceptibility. It is possible, therefore, that some additional change in LPS promoted by SPC-inducedmexXYexpression impacted CPA synthesis or its incorporation into LPS and that this was responsible for the observed changes in polymyxin susceptibility.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Paulo Juarez ◽  
Isabelle Broutin ◽  
Christophe Bordi ◽  
Patrick Plésiat ◽  
Catherine Llanes

ABSTRACTWhen overproduced, the multidrug efflux system MexEF-OprN increases the resistance ofPseudomonas aeruginosato fluoroquinolones, chloramphenicol, and trimethoprim. In this work, we demonstrate that gain-of-function mutations in the regulatory genemexTresult in oligomerization of the LysR regulator MexT, constitutive upregulation of the efflux pump, and increased resistance in clinical isolates.


1999 ◽  
Vol 181 (20) ◽  
pp. 6300-6305 ◽  
Author(s):  
Thilo Köhler ◽  
Simone F. Epp ◽  
Lasta Kocjancic Curty ◽  
Jean-Claude Pechère

ABSTRACT We investigated the regulation of the MexEF-OprN multidrug efflux system of Pseudomonas aeruginosa, which is overexpressed innfxC-type mutants and confers resistance to quinolones, chloramphenicol and trimethoprim. Sequencing of the DNA region upstream of the mexEF-oprN operon revealed the presence of an open reading frame (ORF) of 304 amino acids encoding a LysR-type transcriptional activator, termed MexT. By using T7-polymerase, a 34-kDa protein was expressed in Escherichia coli from a plasmid carrying the mexT gene. Expression of amexE::lacZ fusion was 10-fold higher in nfxC-type mutants than in the wild-type strain; however, transcription of mexT as well as the mexT DNA region was unchanged. Located adjacent to mexT but transcribed in opposite direction, the beginning of an ORF termedqrh (quinone oxidoreductase homologue) was identified. Expression of a qrh::lacZ fusion was also found to be activated by MexT. Further, we present evidence for coregulation at the transcriptional and the posttranscriptional level between the MexEF-OprN efflux system and the OprD porin responsible for cross-resistance of nfxC-type mutants to carbapenem antibiotics.


2008 ◽  
Vol 74 (6) ◽  
pp. 1932-1935 ◽  
Author(s):  
Chelsea J. Papadopoulos ◽  
Christine F. Carson ◽  
Barbara J. Chang ◽  
Thomas V. Riley

ABSTRACT Using a series of efflux mutants of Pseudomonas aeruginosa, the MexAB-OprM pump was identified as contributing to this organism's tolerance to the antimicrobial agent tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and α-terpineol. These data show that a multidrug efflux system of P. aeruginosa can extrude monoterpenes and related alcohols.


2010 ◽  
Vol 54 (8) ◽  
pp. 3113-3120 ◽  
Author(s):  
Takehiko Mima ◽  
Herbert P. Schweizer

ABSTRACT Most Burkholderia pseudomallei strains are intrinsically aminoglycoside resistant, mainly due to AmrAB-OprA-mediated efflux. Rare naturally occurring or genetically engineered mutants lacking this pump are aminoglycoside susceptible despite the fact that they also encode and express BpeAB-OprB, which was reported to mediate efflux of aminoglycosides in the Singapore strain KHW. To reassess the role of BpeAB-OprB in B. pseudomallei aminoglycoside resistance, we used mutants overexpressing or lacking this pump in either AmrAB-OprA-proficient or -deficient strain 1026b backgrounds. Our data show that BpeAB-OprB does not mediate efflux of aminoglycosides but is a multidrug efflux system which extrudes macrolides, fluoroquinolones, tetracyclines, acriflavine, and, to a lesser extent, chloramphenicol. Phylogenetically, BpeAB-OprB is closely related to Pseudomonas aeruginosa MexAB-OprM, which has a similar substrate spectrum. AmrAB-OprA is most closely related to MexXY, the only P. aeruginosa efflux pump known to extrude aminoglycosides. Since BpeAB-OprB in strain KHW was also implicated in playing a major role in export of acylated homoserine lactone (AHL) quorum-sensing molecules and in expression of diverse virulence factors, we explored whether this was also true in the strain 1026b background. The results showed that BpeAB-OprB was not required for AHL export, and mutants lacking this efflux system exhibited normal swimming motility and siderophore production, which were severely impaired in KHW bpeAB-oprB mutants. Biofilm formation was impaired in 1026b Δ(amrRAB-oprA) and Δ(amrRAB-oprA) Δ(bpeAB-oprB) mutants. At present, we do not know why our BpeAB-OprB susceptibility and virulence factor expression results with 1026b and its derivatives are different from those previously published for Singapore strain KHW.


Sign in / Sign up

Export Citation Format

Share Document