scholarly journals Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1

2003 ◽  
Vol 51 (4) ◽  
pp. 991-994 ◽  
Author(s):  
Y. Morita
2003 ◽  
Vol 47 (2) ◽  
pp. 665-669 ◽  
Author(s):  
Melissa A. Visalli ◽  
Ellen Murphy ◽  
Steven J. Projan ◽  
Patricia A. Bradford

ABSTRACT Tigecycline has good broad-spectrum activity against many gram-positive and gram-negative pathogens with the notable exception of the Proteeae. A study was performed to identify the mechanism responsible for the reduced susceptibility to tigecycline in Proteus mirabilis. Two independent transposon insertion mutants of P. mirabilis that had 16-fold-increased susceptibility to tigecycline were mapped to the acrB gene homolog of the Escherichia coli AcrRAB efflux system. Wild-type levels of decreased susceptibility to tigecycline were restored to the insertion mutants by complementation with a clone containing a PCR-derived fragment from the parental wild-type acrRAB efflux gene cluster. The AcrAB transport system appears to be associated with the intrinsic reduced susceptibility to tigecycline in P. mirabilis.


2000 ◽  
Vol 44 (3) ◽  
pp. 658-664 ◽  
Author(s):  
Hideaki Maseda ◽  
Hiroshi Yoneyama ◽  
Taiji Nakae

ABSTRACT Pseudomonas aeruginosa expresses a low level of the MexAB-OprM efflux pump and shows natural resistance to many structurally and functionally diverse antibiotics. The mutation that has been referred to previously as nfxC expresses an additional efflux pump, MexEF-OprN, exhibiting resistance to fluoroquinolones, imipenem, and chloramphenicol and hypersusceptibility to β-lactam antibiotics. To address the antibiotic specificity of the MexEF-OprN efflux pump, we introduced a plasmid carrying themexEF-oprN operon into P. aeruginosa lacking the mexAB-oprM operon. The transformants exhibited resistance to fluoroquinolones, trimethoprim, and chloramphenicol but, unlike most nfxC-type mutants, did not show β-lactam hypersusceptibility. The transformants exhibited additional resistance to tetracycline. In the next experiment, we analyzed the MexEF-OprN pump subunit(s) responsible for substrate selectivity by expressing MexE, MexF, OprN, and MexEF in strains lacking MexA, MexB, OprM, and MexAB, respectively. The MexEF-OprM/ΔMexAB transformants exhibited MexEF-OprN-type pump function that rendered the strains resistant to fluoroquinolones and chloramphenicol but did not change susceptibility to β-lactam antibiotics compared with the host strain. The MexAB-OprN/ΔOprM, MexAF-OprM/ΔMexB, and MexEB-OprM/ΔMexA mutants exhibited antibiotic susceptibility indistinguishable from that in the mutant lacking both types of efflux pumps. The results imply that the MexEF-OprM pump selects substrates by a MexEF functional unit. Interestingly, OprN did not link functionally with the MexAB complex, despite the fact that OprM interacted functionally with MexEF.


2002 ◽  
Vol 46 (11) ◽  
pp. 3386-3393 ◽  
Author(s):  
Patricia Sánchez ◽  
Ana Alonso ◽  
Jose L. Martinez

ABSTRACT We report on the cloning of the gene smeT, which encodes the transcriptional regulator of the Stenotrophomonas maltophilia efflux pump SmeDEF. SmeT belongs to the TetR and AcrR family of transcriptional regulators. The smeT gene is located upstream from the structural operon of the pump genes smeDEF and is divergently transcribed from those genes. Experiments with S. maltophilia and the heterologous host Escherichia coli have demonstrated that SmeT is a transcriptional repressor. S1 nuclease mapping has demonstrated that expression of smeT is driven by a single promoter lying close to the 5′ end of the gene and that expression of smeDEF is driven by an unique promoter that overlaps with promoter PsmeT. The level of expression of smeT is higher in smeDEF-overproducing S. maltophilia strain D457R, which suggests that SmeT represses its own expression. Band-shifting assays have shown that wild-type strain S. maltophilia D457 contains a cellular factor(s) capable of binding to the intergenic smeT-smeD region. That cellular factor(s) was absent from smeDEF-overproducing S. maltophilia strain D457R. The sequence of smeT from D457R showed a point mutation that led to a Leu166Gln change within the SmeT protein. This change allowed overexpression of both smeDEF and smeT in D457R. It was noteworthy that expression of wild-type SmeT did not fully complement the smeT mutation in D457R. This suggests that the wild-type protein is not dominant over the mutant SmeT.


Author(s):  
Zheng Fan ◽  
Xiaolei Pan ◽  
Dan Wang ◽  
Ronghao Chen ◽  
Tongtong Fu ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in the bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa. In this study, we found that mutation of the PNPase coding gene (pnp) in P. aeruginosa increases the bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that upregulation of the mexXY genes is responsible for the increased tolerance in the pnp mutant. Furthermore, our experimental results revealed that PNPase controls translation of the armZ mRNA through its 5′ untranslated region (5′-UTR). ArmZ had previously been shown to positively regulate the expression of mexXY. Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Shannon R. Coleman ◽  
Travis Blimkie ◽  
Reza Falsafi ◽  
Robert E. W. Hancock

ABSTRACT Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa. Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.


2003 ◽  
Vol 47 (9) ◽  
pp. 2990-2992 ◽  
Author(s):  
Hiroshi Sekiya ◽  
Takehiko Mima ◽  
Yuji Morita ◽  
Teruo Kuroda ◽  
Tohru Mizushima ◽  
...  

ABSTRACT We isolated mutant YM644, which showed elevated resistance to norfloxacin, ethidium bromide, acriflavine, and rhodamine 6G, from Pseudomonas aeruginosa YM64, a strain that lacks four major multidrug efflux pumps. The genes responsible for the resistance were mexHI-opmD. Elevated ethidium extrusion was observed with cells of YM644 and YM64 harboring a plasmid carrying the genes. Disruption of the genes in the chromosomal DNA of YM644 made the cells sensitive to the drugs.


2014 ◽  
Vol 58 (9) ◽  
pp. 5102-5110 ◽  
Author(s):  
Bernardo Ramírez-Zavala ◽  
Selene Mogavero ◽  
Eva Schöller ◽  
Christoph Sasse ◽  
P. David Rogers ◽  
...  

ABSTRACTOverexpression of the multidrug efflux pumpMDR1is one mechanism by which the pathogenic yeastCandida albicansdevelops resistance to the antifungal drug fluconazole. The constitutive upregulation ofMDR1in fluconazole-resistant, clinicalC. albicansisolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activatesMDR1transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However,MDR1expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response inC. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotesMDR1overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 causedMDR1overexpression in a wild-type strain but only weakly in mutants lackingADA2. In the presence of benomyl or H2O2, compounds that induceMDR1expression in an Mrr1- and Cap1-dependent fashion,MDR1was upregulated with the same efficiency in wild-type andada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to theMDR1promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required forMDR1overexpression in fluconazole-resistantC. albicansstrains containing gain-of-function mutations in Mrr1.


2000 ◽  
Vol 13 (5) ◽  
pp. 572-577 ◽  
Author(s):  
Ramón González-Pasayo ◽  
Esperanza Martínez-Romero

Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin.


2001 ◽  
Vol 183 (18) ◽  
pp. 5213-5222 ◽  
Author(s):  
Thilo Köhler ◽  
Christian van Delden ◽  
Lasta Kocjancic Curty ◽  
Mehri Michea Hamzehpour ◽  
Jean-Claude Pechere

ABSTRACT Intrinsic and acquired antibiotic resistance of the nosocomial pathogen Pseudomonas aeruginosa is mediated mainly by the expression of several efflux pumps of broad substrate specificity. Here we report that nfxC type mutants, overexpressing the MexEF-OprN efflux system, produce lower levels of extracellular virulence factors than the susceptible wild type. These include pyocyanin, elastase, and rhamnolipids, three factors controlled by the las and rhl quorum-sensing systems of P. aeruginosa. In agreement with these observations are the decreased transcription of the elastase genelasB and the rhamnosyltransferase genesrhlAB measured in nfxC type mutants. Expression of the lasR and rhlR regulator genes was not affected in the nfxC type mutant. In contrast, transcription of the C4-homoserine lactone (C4-HSL) autoinducer synthase gene rhlI was reduced by 50% in the nfxC type mutant relative to that in the wild type. This correlates with a similar decrease in C4-HSL levels detected in supernatants of the nfxC type mutant. Transcription of an rhlAB-lacZ fusion could be partially restored by the addition of synthetic C4-HSL andPseudomonas quinolone signal (PQS). It is proposed that the MexEF-OprN efflux pump affects intracellular PQS levels.


Sign in / Sign up

Export Citation Format

Share Document