multidrug efflux pumps
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 40)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Coline Plé ◽  
Heng-Keat Tam ◽  
Anais Vieira Da Cruz ◽  
Nina Compagne ◽  
Juan-Carlos Jiménez-Castellanos ◽  
...  

AbstractEfflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


2021 ◽  
Author(s):  
Martijn Zwama ◽  
Kunihiko Nishino

Multidrug resistance (MDR) in bacteria can be caused by the over-expression of multidrug efflux pumps belonging to the Resistance-Nodulation-Division (RND) superfamily of proteins. These intrinsic or acquired pumps can export a wide range of antibiotics. Recently, amino acid substitutions within these pumps have been observed in resistant clinical strains. Among others, two of these worrying gain-of-function mutations are R717L and R717Q in the proximal binding pocket of efflux pump AcrB (AcrB-Sa) found in azithromycin-resistant Salmonella enterica spp. We investigated the ramifications of these (and other) mutations in phylogenetically closely related AcrB from Escherichia coli (AcrB-Ec). We found that AcrB-Ec harboring Arg717 substitutions were significantly more effective in exporting all tested macrolides, with an up to 8-fold increase in the minimum inhibitory concentration (MIC) values (from 16 to 128 µg/mL for azithromycin). Interestingly, gain-of-function was also seen for fluoroquinolones (2-fold higher MICs), while there was a consistent loss-of-function for the export of novobiocin and β-lactam cloxacillin (2-fold lower MICs), pointing to a protein adaptation, which simultaneously partly compromised the efflux ability of other compounds with different molecular properties. Disk diffusion susceptibility testing corroborated the findings, as the R717Q and R717L mutant strains had significantly smaller inhibition zones for macrolides and fluoroquinolones and a larger inhibition zone for novobiocin, compared to the wild type. The spread and independent emergences of these potent efflux pump mutations highlight the necessity of control of, and adjustments to, treatments with antibiotics and the need for novel antibiotics and efflux pump inhibitors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kunihiko Nishino ◽  
Seiji Yamasaki ◽  
Ryosuke Nakashima ◽  
Martijn Zwama ◽  
Mitsuko Hayashi-Nishino

Multidrug efflux pumps are inner membrane transporters that export multiple antibiotics from the inside to the outside of bacterial cells, contributing to bacterial multidrug resistance (MDR). Postgenomic analysis has demonstrated that numerous multidrug efflux pumps exist in bacteria. Also, the co-crystal structural analysis of multidrug efflux pumps revealed the drug recognition and export mechanisms, and the inhibitory mechanisms of the pumps. A single multidrug efflux pump can export multiple antibiotics; hence, developing efflux pump inhibitors is crucial in overcoming infectious diseases caused by multidrug-resistant bacteria. This review article describes the role of multidrug efflux pumps in MDR, and their physiological functions and inhibitory mechanisms.


Author(s):  
Christian Bonifer ◽  
Clemens Glaubitz

ATP-binding cassette (ABC) transporters play an important role in various cellular processes. They display a similar architecture and share a mechanism which couples ATP hydrolysis to substrate transport. However, in the light of current data and recent experimental progress, this protein superfamily appears as multifaceted as their broad substrate range. Among the prokaryotic ABC transporters, MsbA can serve as a paradigm for research in this field. It is located in the inner membrane of Gram-negative bacteria and functions as a floppase for the lipopolysaccharide (LPS) precursor core-LPS, which is involved in the biogenesis of the bacterial outer membrane. While MsbA shows high similarity to eukaryotic ABC transporters, its expression in Gram-negative bacteria makes it conveniently accessible for many experimental approaches from spectroscopy to 3D structure determination. As an essential protein for bacterial membrane integrity, MsbA has also become an attractive target for the development of novel antibiotics. Furthermore, it serves as a model for multidrug efflux pumps. Here we provide an overview of recent findings and their relevance to the field, highlight the potential of methods such as solid-state NMR and EPR spectroscopy and provide a perspective for future work.


2021 ◽  
pp. 105286
Author(s):  
Thiago S. Freitas ◽  
Jayze C. Xavier ◽  
Raimundo L.S. Pereira ◽  
Janaína E. Rocha ◽  
Fábia F. Campina ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Francesca L. Short ◽  
Qi Liu ◽  
Bhumika Shah ◽  
Heather E. Clift ◽  
Varsha Naidu ◽  
...  

AbstractAntimicrobial resistance genes, including multidrug efflux pumps, evolved long before the ubiquitous use of antimicrobials in medicine and infection control. Multidrug efflux pumps often transport metabolites, signals and host-derived molecules in addition to antibiotics or biocides. Understanding their ancestral physiological roles could inform the development of strategies to subvert their activity. In this study, we investigated the response of Acinetobacter baumannii to polyamines, a widespread, abundant class of amino acid-derived metabolites, which led us to identify long-chain polyamines as natural substrates of the disinfectant efflux pump AmvA. Loss of amvA dramatically reduced tolerance to long-chain polyamines, and these molecules induce expression of amvA through binding to its cognate regulator AmvR. A second clinically-important efflux pump, AdeABC, also contributed to polyamine tolerance. Our results suggest that the disinfectant resistance capability that allows A. baumannii to survive in hospitals may have evolutionary origins in the transport of polyamine metabolites.


2021 ◽  
Vol 9 (8) ◽  
pp. 1741
Author(s):  
Dorothea K. Thompson ◽  
Stephen M. Sharkady

Cedecea, a genus in the Enterobacteriaceae family, includes several opportunistic pathogens reported to cause an array of sporadic acute infections, most notably of the lung and bloodstream. One species, Cedecea neteri, is associated with cases of bacteremia in immunocompromised hosts and has documented resistance to different antibiotics, including β-lactams and colistin. Despite the potential to inflict serious infections, knowledge about drug resistance determinants in Cedecea is limited. In this study, we utilized whole-genome sequence data available for three environmental strains (SSMD04, M006, ND14a) of C. neteri and various bioinformatics tools to analyze drug resistance genes in this bacterium. All three genomes harbor multiple chromosome-encoded β-lactamase genes. A deeper analysis of β-lactamase genes in SSMD04 revealed four metallo-β-lactamases, a novel variant, and a CMY/ACT-type AmpC putatively regulated by a divergently transcribed AmpR. Homologs of known resistance-nodulation-cell division (RND)-type multidrug efflux pumps such as OqxB, AcrB, AcrD, and MdtBC were also identified. Genomic island prediction for SSMD04 indicated that tolC, involved in drug and toxin export across the outer membrane of Gram-negative bacteria, was acquired by a transposase-mediated genetic transfer mechanism. Our study provides new insights into drug resistance mechanisms of an environmental microorganism capable of behaving as a clinically relevant opportunistic pathogen.


Author(s):  
Priyanka Ashwath ◽  
Akhila Dharnappa Sannejal

AbstractNosocomial infections caused by Klebsiella species are characterized by high rates of morbidity and mortality. The emergence of the multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative bacteria reduces the antibiotic efficacy in the treatment of infections caused by the microorganisms. Management of these infections is often difficult, due to the high frequency of strains resistant to multiple antimicrobial agents. Multidrug efflux pumps play a major role as a mechanism of antimicrobial resistance in Gram-negative pathogens. Efflux systems are significant in conferring intrinsic and acquired resistance to the bacteria. The emergence of increasing drug resistance among Klebsiella pneumoniae nosocomial isolates has limited the therapeutic options for treatment of these infections and hence there is a constant quest for an alternative. In this review, we discuss various resistance mechanisms, focusing on efflux pumps and related genes in conferring resistance to Klebsiella. The role of various efflux pump inhibitors (EPIs) in restoring the antibacterial activity has also been discussed. In specific, antisense oligonucleotides as alternative therapeutics in combatting efflux-mediated resistance in Klebsiella species have focused upon.


2021 ◽  
Vol 8 ◽  
Author(s):  
Martina Pasqua ◽  
Maria Carmela Bonaccorsi di Patti ◽  
Giulia Fanelli ◽  
Ryutaro Utsumi ◽  
Yoko Eguchi ◽  
...  

Bacterial pathogens are able to survive within diverse habitats. The dynamic adaptation to the surroundings depends on their ability to sense environmental variations and to respond in an appropriate manner. This involves, among others, the activation of various cell-to-cell communication strategies. The capability of the bacterial cells to rapidly and co-ordinately set up an interplay with the host cells and/or with other bacteria facilitates their survival in the new niche. Efflux pumps are ubiquitous transmembrane transporters, able to extrude a large set of different molecules. They are strongly implicated in antibiotic resistance since they are able to efficiently expel most of the clinically relevant antibiotics from the bacterial cytoplasm. Besides antibiotic resistance, multidrug efflux pumps take part in several important processes of bacterial cell physiology, including cell to cell communication, and contribute to increase the virulence potential of several bacterial pathogens. Here, we focus on the structural and functional role of multidrug efflux pumps belonging to the Major Facilitator Superfamily (MFS), the largest family of transporters, highlighting their involvement in the colonization of host cells, in virulence and in biofilm formation. We will offer an overview on how MFS multidrug transporters contribute to bacterial survival, adaptation and pathogenicity through the export of diverse molecules. This will be done by presenting the functions of several relevant MFS multidrug efflux pumps in human life-threatening bacterial pathogens as Staphylococcus aureus, Listeria monocytogenes, Klebsiella pneumoniae, Shigella/E. coli, Acinetobacter baumannii.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 830
Author(s):  
Prasangi Rajapaksha ◽  
Isoiza Ojo ◽  
Ling Yang ◽  
Ankit Pandeya ◽  
Thilini Abeywansha ◽  
...  

The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called “dominant negative” effect. Being one of the most intensively studied bacterial multidrug efflux pumps, many AcrA and AcrB mutations have been reported that disrupt efflux through different mechanisms. We examined five groups of AcrB and AcrA mutants, defective in different aspects of assembly and substrate efflux. We found that none of them demonstrated the expected dominant negative effect, even when expressed at concentrations many folds higher than their genomic counterpart. The assembly of the AcrAB-TolC complex appears to have a proof-read mechanism that effectively eliminated the formation of futile pump complex.


Sign in / Sign up

Export Citation Format

Share Document