scholarly journals X-Ray Crystal Structure of the Multidomain Endoglucanase Cel9G from Clostridium cellulolyticum Complexed with Natural and Synthetic Cello-Oligosaccharides

2003 ◽  
Vol 185 (14) ◽  
pp. 4127-4135 ◽  
Author(s):  
David Mandelman ◽  
Anne Belaich ◽  
J. P. Belaich ◽  
Nushin Aghajari ◽  
Hugues Driguez ◽  
...  

ABSTRACT Complete cellulose degradation is the first step in the use of biomass as a source of renewable energy. To this end, the engineering of novel cellulase activity, the activity responsible for the hydrolysis of the β-1,4-glycosidic bonds in cellulose, is a topic of great interest. The high-resolution X-ray crystal structure of a multidomain endoglucanase from Clostridium cellulolyticum has been determined at a 1.6-Å resolution. The endoglucanase, Cel9G, is comprised of a family 9 catalytic domain attached to a family IIIc cellulose-binding domain. The two domains together form a flat platform onto which crystalline cellulose is suggested to bind and be fed into the active-site cleft for endolytic hydrolysis. To further dissect the structural basis of cellulose binding and hydrolysis, the structures of Cel9G in the presence of cellobiose, cellotriose, and a DP-10 thio-oligosaccharide inhibitor were resolved at resolutions of 1.7, 1.8, and 1.9 Å, respectively.

Author(s):  
Nobuo Okazaki ◽  
Michael Blaber ◽  
Ryota Kuroki ◽  
Taro Tamada

Glycosyltrehalose synthase (GTSase) converts the glucosidic bond between the last two glucose residues of amylose from an α-1,4 bond to an α-1,1 bond, generating a nonreducing glycosyl trehaloside, in the first step of the biosynthesis of trehalose. To better understand the structural basis of the catalytic mechanism, the crystal structure of GTSase from the hyperthermophilic archaeonSulfolobus shibataeDSM5389 (5389-GTSase) has been determined to 2.4 Å resolution by X-ray crystallography. The structure of 5389-GTSase can be divided into five domains. The central domain contains the (β/α)8-barrel fold that is conserved as the catalytic domain in the α-amylase family. Three invariant catalytic carboxylic amino acids in the α-amylase family are also found in GTSase at positions Asp241, Glu269 and Asp460 in the catalytic domain. The shape of the catalytic cavity and the pocket size at the bottom of the cavity correspond to the intramolecular transglycosylation mechanism proposed from previous enzymatic studies.


2010 ◽  
Vol 77 (4) ◽  
pp. 1436-1442 ◽  
Author(s):  
Florence Mingardon ◽  
John D. Bagert ◽  
Cyprien Maisonnier ◽  
Devin L. Trudeau ◽  
Frances H. Arnold

ABSTRACTCellulases containing a family 9 catalytic domain and a family 3c cellulose binding module (CBM3c) are important components of bacterial cellulolytic systems. We measured the temperature dependence of the activities of three homologs:Clostridium cellulolyticumCel9G,Thermobifida fuscaCel9A, andC. thermocellumCel9I. To directly compare their catalytic activities, we constructed six new versions of the enzymes in which the three GH9-CBM3c domains were fused to a dockerin both with and without aT. fuscafibronectin type 3 homology module (Fn3). We studied the activities of these enzymes on crystalline cellulose alone and in complex with a miniscaffoldin containing a cohesin and a CBM3a. The presence of Fn3 had no measurable effect on thermostability or cellulase activity. The GH9-CBM3c domains of Cel9A and Cel9I, however, were more active than the wild type when fused to a dockerin complexed to scaffoldin. The three cellulases in complex have similar activities on crystalline cellulose up to 60°C, butC. thermocellumCel9I, the most thermostable of the three, remains highly active up to 80°C, where its activity is 1.9 times higher than at 60°C. We also compared the temperature-dependent activities of different versions of Cel9I (wild type or in complex with a miniscaffoldin) and found that the thermostable CBM is necessary for activity on crystalline cellulose at high temperatures. These results illustrate the significant benefits of working with thermostable enzymes at high temperatures, as well as the importance of retaining the stability of all modules involved in cellulose degradation.


1997 ◽  
Vol 4 (12) ◽  
pp. 995-1000 ◽  
Author(s):  
Heidi Erlandsen ◽  
Fabrizia Fusetti ◽  
Aurora Martinez ◽  
Edward Hough ◽  
Torgeir Flatmark ◽  
...  

1991 ◽  
Vol 279 (3) ◽  
pp. 793-799 ◽  
Author(s):  
L M A Ferreira ◽  
G P Hazlewood ◽  
P J Barker ◽  
H J Gilbert

A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA was constructed in pUC18 and Escherichia coli recombinants expressing 4-methylumbelliferyl beta-D-cellobioside-hydrolysing activity (MUCase) were isolated. Enzyme produced by MUCase-positive clones did not hydrolyse either cellobiose or cellotriose but converted cellotetraose into cellobiose and cleaved cellopentaose and cellohexaose, producing a mixture of cellobiose and cellotriose. There was no activity against CM-cellulose, insoluble cellulose or xylan. On this basis, the enzyme is identified as an endo-acting cellodextrinase and is designated cellodextrinase C (CELC). Nucleotide sequencing of the gene (celC) which directs the synthesis of CELC revealed an open reading frame of 2153 bp, encoding a protein of Mr 80,189. The deduced primary sequence of CELC was confirmed by the Mr of purified CELC (77,000) and by the experimentally determined N-terminus of the enzyme which was identical with residues 38-47 of the translated sequence. The N-terminal region of CELC showed strong homology with endoglucanase, xylanases and an arabinofuranosidase of Ps. fluorescens subsp. cellulosa; homologous sequences included highly conserved serine-rich regions. Full-length CELC bound tightly to crystalline cellulose. Truncated forms of celC from which the DNA sequence encoding the conserved domain had been deleted, directed the synthesis of a functional cellodextrinase that did not bind to crystalline cellulose. This is consistent with the N-terminal region of CELC comprising a non-catalytic cellulose-binding domain which is distinct from the catalytic domain. The role of the cellulose-binding region is discussed.


2002 ◽  
Vol 46 (12) ◽  
pp. 3978-3980 ◽  
Author(s):  
Beth M. Beadle ◽  
Brian K. Shoichet

ABSTRACT To determine how imipenem inhibits the class C β-lactamase AmpC, the X-ray crystal structure of the acyl-enzyme complex was determined to a resolution of 1.80 Å. In the complex, the lactam carbonyl oxygen of imipenem has flipped by approximately 180° compared to its expected position; the electrophilic acyl center is thus displaced from the point of hydrolytic attack. This conformation resembles that of imipenem bound to the class A enzyme TEM-1 but is different from that of moxalactam bound to AmpC.


2014 ◽  
Vol 70 (7) ◽  
pp. 1965-1976 ◽  
Author(s):  
Clorinda Lori ◽  
Alessandra Pasquo ◽  
Roberta Montanari ◽  
Davide Capelli ◽  
Valerio Consalvi ◽  
...  

The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.


Author(s):  
Lijuan Gao ◽  
Yaru Su ◽  
Wenxia Song ◽  
Weican Zhang ◽  
Qingsheng Qi ◽  
...  

Cytophaga hutchinsonii is an abundant soil cellulolytic bacterium that uses a unique cellulose degradation mechanism different from those that involve free cellulases or cellulosomes. Though several proteins were identified to be important for cellulose degradation, the mechanism used by C. hutchinsonii to digest crystalline cellulose remains a mystery. In this study, chu_0922 was identified by insertional mutation and gene deletion as an important gene locus indispensable for crystalline cellulose utilization. Deletion of chu_0922 resulted in defect in crystalline cellulose utilization. The Δ 0922 mutant completely lost the ability to grow on crystalline cellulose even with extended incubation, and selectively utilized the amorphous region of cellulose leading to the increased crystallinity. As a protein secreted by the type Ⅸ secretion system (T9SS), CHU_0922 was found to be located on the outer membrane, and the outer membrane localization of CHU_0922 relied on the T9SS. Comparative analysis of the outer membrane proteins revealed that the abundance of several cellulose binding proteins, including CHU_1276, CHU_1277, and CHU_1279, was reduced in the Δ 0922 mutant. Further study showed that CHU_0922 is crucial for the full expression of the gene cluster containing chu_1276 , chu_1277 , chu_1278 , chu_1279 , and chu_1280 ( cel9C ), which is essential for cellulose utilization. Moreover, CHU_0922 is required for the cell surface localization of CHU_3220, a cellulose binding protein that is essential for crystalline cellulose utilization. Our study provides insights into the complex system that C. hutchinsonii uses to degrade crystalline cellulose. IMPORTANCE The widespread aerobic cellulolytic bacterium Cytophaga hutchinsonii , belonging to the phylum Bacteroidetes , utilizes a novel mechanism to degrade crystalline cellulose. No genes encoding proteins specialized in loosening or disruption the crystalline structure of cellulose were identified in the genome of C. hutchinsonii , except for chu_3220 and chu_1557 . The crystalline cellulose degradation mechanism remains enigmatic. This study identified a new gene locus, chu_0922 , encoding a typical T9SS substrate that is essential for crystalline cellulose degradation. Notably, CHU_0922 is crucial for the normal transcription of chu_1276 , chu_1277 , chu_1278 , chu_1279 , and chu_1280 ( cel9C ), which play important roles in the degradation of cellulose. Moreover, CHU_0922 participates in the cell surface localization of CHU_3220. These results demonstrated that CHU_0922 plays a key role in the crystalline cellulose degradation network. Our study will promote the uncovering of the novel cellulose utilization mechanism of C. hutchinsonii.


2002 ◽  
Vol 184 (5) ◽  
pp. 1378-1384 ◽  
Author(s):  
Anne Belaich ◽  
Goetz Parsiegla ◽  
Laurent Gal ◽  
Claude Villard ◽  
Richard Haser ◽  
...  

ABSTRACT A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.


2011 ◽  
Vol 77 (8) ◽  
pp. 2727-2733 ◽  
Author(s):  
Wendy Higashide ◽  
Yongchao Li ◽  
Yunfeng Yang ◽  
James C. Liao

ABSTRACTProducing biofuels directly from cellulose, known as consolidated bioprocessing, is believed to reduce costs substantially compared to a process in which cellulose degradation and fermentation to fuel are accomplished in separate steps. Here we present a metabolic engineering example for the development of aClostridium cellulolyticumstrain for isobutanol synthesis directly from cellulose. This strategy exploits the host's natural cellulolytic activity and the amino acid biosynthesis pathway and diverts its 2-keto acid intermediates toward alcohol synthesis. Specifically, we have demonstrated the first production of isobutanol to approximately 660 mg/liter from crystalline cellulose by using this microorganism.


Sign in / Sign up

Export Citation Format

Share Document