scholarly journals Cnu, a Novel oriC-Binding Protein of Escherichia coli

2005 ◽  
Vol 187 (20) ◽  
pp. 6998-7008 ◽  
Author(s):  
Myung Suk Kim ◽  
Sung-Hun Bae ◽  
Sang Hoon Yun ◽  
Hee Jung Lee ◽  
Sang Chun Ji ◽  
...  

ABSTRACT We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.

1998 ◽  
Vol 180 (6) ◽  
pp. 1603-1606 ◽  
Author(s):  
Jens Germer ◽  
Andrea Muffler ◽  
Regine Hengge-Aronis

ABSTRACT The ςS- and ς70-associated forms of RNA polymerase core enzyme (E) of Escherichia coli have very similar promoter recognition specificities in vitro. Nevertheless, the in vivo expression of many stress response genes is strongly dependent on ςS. Based on in vitro assays, it has recently been proposed that the disaccharide trehalose specifically stimulates the formation and activity of EςS and thereby contributes to promoter selectivity (S. Kusano and A. Ishihama, J. Bacteriol. 179:3649–3654, 1997). However, we demonstrate here that a trehalose-free otsA mutant exhibits growth phase-related and osmotic induction of various ςS-dependent genes which is indistinguishable from that of an otherwise isogenic wild-type strain and that stationary-phase cells do not accumulate trehalose (even though the trehalose-synthesizing enzymes are induced). We conclude that in vivo trehalose does not play a role in the expression of ςS-dependent genes and therefore also not in sigma factor selectivity at the promoters of these genes.


2015 ◽  
Vol 84 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Renu Verma ◽  
Thaís Cabrera Galvão Rojas ◽  
Renato Pariz Maluta ◽  
Janaína Luisa Leite ◽  
Livia Pilatti Mendes da Silva ◽  
...  

The extraintestinal pathogen termed avian pathogenicEscherichia coli(APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07.In vitro, the transcription level ofyadCwas upregulated at 41°C and downregulated at 22°C. TheyadCexpressionin vivowas more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadCstrain presented a slightly decreased ability to adhere to HeLa cells with or without thed-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed thatfimHwas downregulated (P< 0.05) andcsgAandecpAwere slightly upregulated in the mutant strain, showing thatyadCmodulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadCstrain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P< 0.05). Motility assays in soft agar demonstrated that the ΔyadCstrain was less motile than the wild type (P< 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadCstrain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Anastasiia N. Klimova ◽  
Steven J. Sandler

ABSTRACT Escherichia coli PriA and PriC recognize abandoned replication forks and direct reloading of the DnaB replicative helicase onto the lagging-strand template coated with single-stranded DNA-binding protein (SSB). Both PriA and PriC have been shown by biochemical and structural studies to physically interact with the C terminus of SSB. In vitro, these interactions trigger remodeling of the SSB on ssDNA. priA341(R697A) and priC351(R155A) negated the SSB remodeling reaction in vitro. Plasmid-carried priC351(R155A) did not complement priC303::kan, and priA341(R697A) has not yet been tested for complementation. Here, we further studied the SSB-binding pockets of PriA and PriC by placing priA341(R697A), priA344(R697E), priA345(Q701E), and priC351(R155A) on the chromosome and characterizing the mutant strains. All three priA mutants behaved like the wild type. In a ΔpriB strain, the mutations caused modest increases in SOS expression, cell size, and defects in nucleoid partitioning (Par−). Overproduction of SSB partially suppressed these phenotypes for priA341(R697A) and priA344(R697E). The priC351(R155A) mutant behaved as expected: there was no phenotype in a single mutant, and there were severe growth defects when this mutation was combined with ΔpriB. Analysis of the priBC mutant revealed two populations of cells: those with wild-type phenotypes and those that were extremely filamentous and Par− and had high SOS expression. We conclude that in vivo, priC351(R155A) identified an essential residue and function for PriC, that PriA R697 and Q701 are important only in the absence of PriB, and that this region of the protein may have a complicated relationship with SSB. IMPORTANCE Escherichia coli PriA and PriC recruit the replication machinery to a collapsed replication fork after it is repaired and needs to be restarted. In vitro studies suggest that the C terminus of SSB interacts with certain residues in PriA and PriC to recruit those proteins to the repaired fork, where they help remodel it for restart. Here, we placed those mutations on the chromosome and tested the effect of mutating these residues in vivo. The priC mutation completely abolished function. The priA mutations had no effect by themselves. They did, however, display modest phenotypes in a priB-null strain. These phenotypes were partially suppressed by SSB overproduction. These studies give us further insight into the reactions needed for replication restart.


2001 ◽  
Vol 183 (2) ◽  
pp. 671-679 ◽  
Author(s):  
Bryan D. Beel ◽  
Gerald L. Hazelbauer

ABSTRACT We extended characterization of mutational substitutions in the ligand-binding region of Trg, a low-abundance chemoreceptor ofEscherichia coli. Previous investigations using patterns of adaptational methylation in vivo led to the suggestion that one class of substitutions made the receptor insensitive, reducing ligand-induced signaling, and another mimicked ligand occupancy, inducing signaling in the absence of ligand. We tested these deductions with in vitro assays of kinase activation and found that insensitive receptors activated the kinase as effectively as wild-type receptors and that induced-signaling receptors exhibited the low level of kinase activation characteristic of occupied receptors. Differential activation by the two mutant classes was not dependent on high-abundance receptors. Cellular context can affect the function of low-abundance receptors. Assays of chemotactic response and adaptational modification in vivo showed that increasing cellular dosage of mutant forms of Trg to a high-abundance level did not significantly alter phenotypes, nor did the presence of high-abundance receptors significantly correct phenotypic defects of reduced-signaling receptors. In contrast, defects of induced-signaling receptors were suppressed by the presence of high-abundance receptors. Grafting the interaction site for the adaptational-modification enzymes to the carboxyl terminus of induced-signaling receptors resulted in a similar suppression of phenotypic defects of induced-signaling receptors, implying that high-abundance receptors could suppress defects in induced-signaling receptors by providing their natural enzyme interaction sites intrans in clusters of suppressing and suppressed receptors. As in the case of cluster-related functional assistance provided by high-abundance receptors for wild-type low-abundance receptors, suppression by high-abundance receptors of phenotypic defects in induced-signaling forms of Trg involved assistance in adaptation, not signaling.


2001 ◽  
Vol 183 (7) ◽  
pp. 2259-2264 ◽  
Author(s):  
Yan Wei ◽  
Amy C. Vollmer ◽  
Robert A. LaRossa

ABSTRACT Mitomycin C (MMC), a DNA-damaging agent, is a potent inducer of the bacterial SOS response; surprisingly, it has not been used to select resistant mutants from wild-type Escherichia coli. MMC resistance is caused by the presence of any of four distinctE. coli genes (mdfA, gyrl, rob, andsdiA) on high-copy-number vectors. mdfAencodes a membrane efflux pump whose overexpression results in broad-spectrum chemical resistance. The gyrI (also called sbmC) gene product inhibits DNA gyrase activity in vitro, while the rob protein appears to function in transcriptional activation of efflux pumps. SdiA is a transcriptional activator of ftsQAZ genes involved in cell division.


2009 ◽  
Vol 75 (18) ◽  
pp. 5779-5786 ◽  
Author(s):  
Xianhua Yin ◽  
Roger Wheatcroft ◽  
James R. Chambers ◽  
Bianfang Liu ◽  
Jing Zhu ◽  
...  

ABSTRACT O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Ter), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Ter gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Ter-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% ± 21.2% versus 40.1% ± 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Ter, Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium.


2010 ◽  
Vol 78 (12) ◽  
pp. 5324-5331 ◽  
Author(s):  
Nicolas Bertrand ◽  
Sébastien Houle ◽  
Guillaume LeBihan ◽  
Édith Poirier ◽  
Charles M. Dozois ◽  
...  

ABSTRACT Avian pathogenic Escherichia coli (APEC) strains are associated with respiratory infections, septicemia, cellulitis, peritonitis, and other conditions, since colibacillosis manifests in many ways. The Pho regulon is jointly controlled by the two-component regulatory system PhoBR and by the phosphate-specific transport (Pst) system. To determine the specific roles of the PhoBR regulon and the Pst system in the pathogenesis of the APEC O78 strain χ7122, different phoBR and pst mutant strains were tested in vivo in chickens and in vitro for virulence traits. Mutations resulting in constitutive activation of the Pho regulon rendered strains more sensitive than the wild type to hydrogen peroxide and to the bactericidal effects of rabbit serum. In addition, production of type 1 fimbriae was also impaired in these strains. Using a chicken competitive infection model, all PhoB constitutive mutants were outcompeted by the wild-type parent, including strains containing a functional Pst system. Cumulative inactivation of the Pst system and the PhoB regulator resulted in a restoration of virulence. In addition, loss of the PhoB regulator alone did not affect virulence in the chicken infection model. Interestingly, the level of attenuation of the mutant strains correlated directly with the level of activation of the Pho regulon. Overall, results indicate that activation of the Pho regulon rather than phosphate transport by the Pst system plays a major role in the attenuation of the APEC O78 strain χ7122.


2021 ◽  
Author(s):  
Yuzu Anazawa ◽  
Tomoki Kita ◽  
Kumiko Hayashi ◽  
Shinsuke Niwa

KIF1A is a kinesin superfamily molecular motor that transports synaptic vesicle precursors in axons. Mutations in Kif1a lead to a group of neuronal diseases called KIF1A-associated neuronal disorder (KAND). KIF1A forms a homodimer and KAND mutations are mostly de novo and autosomal dominant; however, it is not known whether the function of wild-type KIF1A is inhibited by disease-associated KIF1A. No reliable in vivo model systems to analyze the molecular and cellular biology of KAND have been developed; therefore, here, we established Caenorhabditis elegans models for KAND using CRISPR/cas9 technology and analyzed defects in axonal transport. In the C. elegans models, heterozygotes and homozygotes exhibited reduced axonal transport phenotypes. In addition, we developed in vitro assays to analyze the motility of single heterodimers composed of wild-type KIF1A and disease-associated KIF1A. Disease-associated KIF1A significantly inhibited the motility of wild-type KIF1A when heterodimers were formed. These data indicate the molecular mechanism underlying the dominant nature of de novo KAND mutations.


2011 ◽  
Vol 48 (3) ◽  
pp. 199-204 ◽  
Author(s):  
Jacy Alves Braga de Andrade ◽  
Edna Freymüller ◽  
Ulysses Fagundes-Neto

CONTEXT: Enteroaggregative Escherichia coli strains have been associated with persistent diarrhea in several developing countries. In vivo procedures with animal models, in vitro assays with cellular lines and in vitro organ culture with intestinal fragments have been utilized to study these bacteria and their pathogenicity. OBJECTIVE: The present experimental research assessed the pathogenic interactions of three enteroaggregative Escherichia coli strains, using the in vitro organ culture, in order to show the adherence to different regions of both, the ileal and the colonic mucosa and demonstrate possible mechanisms that could have the participation in the prolongation of diarrheiogenic process. METHODS: This study used intestinal fragments from terminal ileum and colon that were excised from pediatric patients undergoing intestinal surgeries and from adult patients that underwent to colonoscopic procedures. Each strain was tested with three intestinal fragments for each region. Tissue was fixed for scanning electron microscopic analysis. RESULTS: These bacteria colonized ileal and colonic mucosa in the typical stacked-brick configuration in the ileum and colon. In both regions, the strains were seen over a great amount of mucus and sometimes over the intact epithelium. In some regions, there is a probable evidence of effacement of the microvilli. It was possible to see adhered to the intestinal surface, bacteria fimbrial structures that could be responsible for the adherence process. CONCLUSION: In order to cause diarrhea, enteroaggregative Escherichia coli strains adhere to the intestinal mucosa, create a mucoid biofilm on the small bowel surface that could justify the digestive-absorptive abnormalities and consequently, prolonging the diarrhea.


Sign in / Sign up

Export Citation Format

Share Document