scholarly journals Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures

2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Paul A. Granato ◽  
Melissa M. Unz ◽  
Raymond H. Widen ◽  
Suzane Silbert ◽  
Stephen Young ◽  
...  

ABSTRACT The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections.

2015 ◽  
Vol 53 (12) ◽  
pp. 3931-3934 ◽  
Author(s):  
Blake W. Buchan ◽  
Garrett C. Reymann ◽  
Paul A. Granato ◽  
Brenda R. Alkins ◽  
Patricia Jim ◽  
...  

The iC-GPC assay (iCubate, Huntsville, AL) provides a molecular option for the rapid, on-demand analysis of positive blood cultures. A preliminary evaluation of the iC-GPC assay using 203 clinical or seeded specimens demonstrated a sensitivity of 93.8% to 100% and a specificity of 98.0% to 100% for the identification of five Gram-positive bacterial species (Staphylococcus aureus,Staphylococcus epidermidis,Streptococcus pneumoniae,Enterococcus faecalis, andEnterococcus faecium) and three associated genetic resistance determinants (mecA,vanA, andvanB) in positive blood culture broths.


2004 ◽  
Vol 132 (5) ◽  
pp. 921-925 ◽  
Author(s):  
M. MÜLLER-PREMRU ◽  
P. ČERNELČ

Catheter-related bloodstream infection (CRBSI) caused by coagulase-negative staphylococci (CNS) is common in haematological patients with febrile neutropenia. As the clinical signs of CRBSI are usually scarce and it is difficult to differentiate from blood culture contamination, we tried to confirm CRBSI by molecular typing of CNS isolated from paired blood cultures (one from a peripheral vein and another from the central venous catheter hub). Blood cultures were positive in 59 (36%) out of 163 patients. CNS were isolated in 24 (40%) patients; in 14 from paired blood cultures (28 isolates) and in 10 from a single blood culture. CNS from paired blood cultures were identified as Staphylococcus epidermidis. Antimicrobial susceptibility was determined and bacteria were typed by pulsed-field gel electrophoresis (PFGE) of bacterial genomic DNA. In 13 patients, the antibiotic susceptibility of isolates was identical. The PFGE patterns from paired blood cultures were identical or closely related in 10 patients, thus confirming the presence of CRBSI. In the remaining four patients they were unrelated, and suggested a mixed infection or contamination. Since CNS isolates from three patients had identical PFGE patterns, they were probably nosocomially spread amongst them.


2013 ◽  
Vol 51 (4) ◽  
pp. 1130-1136 ◽  
Author(s):  
A. Fernandez-Cruz ◽  
M. Marin ◽  
M. Kestler ◽  
L. Alcala ◽  
M. Rodriguez-Creixems ◽  
...  

2017 ◽  
Vol 55 (7) ◽  
pp. 2116-2126 ◽  
Author(s):  
Matthias Marschal ◽  
Johanna Bachmaier ◽  
Ingo Autenrieth ◽  
Philipp Oberhettinger ◽  
Matthias Willmann ◽  
...  

ABSTRACT Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI.


2017 ◽  
Vol 06 (03) ◽  
pp. 132-133
Author(s):  
Preetam Kalaskar ◽  
Asha Anand ◽  
Harsha Panchal ◽  
Apurva Patel ◽  
Sonia Parikh ◽  
...  

Abstract Introduction: The treatment of acute myeloid leukemia (AML) consists of induction therapy with anthracyclines and cytarabine followed by two to four cycles of consolidation therapy with high-dose cytarabine after achieving remission. There have been very few studies comparing infections during induction and consolidation. We have analyzed blood cultures of patients with AML during episodes of fever occurring during induction and consolidation, for comparing the bloodstream infections in both the phases. Materials and Methods: Blood cultures of patients during febrile episodes were collected from central venous catheters and peripheral blood, both during induction and consolidation therapy of AML. Results: The study population included 52 AML patients. During induction, there were 52 episodes of fever and 25 (48%) blood cultures were positive, 15 of these blood cultures reported Gram-negative organisms, 9 reported Gram-positive organisms and 1 as yeast. During consolidation, 47 episodes of fever were recorded and blood cultures were positive in 12, of which 7 were Gram-negative, 5 were Gram-positive. Conclusion: The incidence of blood culture positive infections during therapy of AML at our center was higher. The predominant organism isolated was Gram-negative both during induction and consolidation. The incidence of blood culture positive infections had decreased by 50% during consolidation.


2003 ◽  
Vol 9 (1-2) ◽  
pp. 185-190
Author(s):  
N. M. Kaplan

Blood cultures submitted to the Clinical Microbiology Laboratory, Queen Alia Military Hospital, Amman during 1999-2001 were examined to evaluate thermonuclease testing for identifying Staphylococcus aureus in blood culture broths growing gram-positive cocci. Of 170 cultures studied, 129 yielded gram-positive staphylococci and 41 yielded other gram-positive cocci. Toluidine blue-deoxynucleic acid agar plates were used to test for thermonuclease activity. St and ard tube coagulase tests were performed on the isolates. Direct detection of thermonuclease activity in 76 blood culture broths containing gram-positive staphylococci showed 100% correlation with subsequent tube coagulase tests. The thermonuclease test provides a fast, specific and reliable confirmation of S. aureus bacteraemia by direct examination of blood culture broths that contain gram-positive cocci. This allows for timely, optimal antibiotic therapy


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Seok Kim ◽  
Go-Eun Kang ◽  
Han-Sung Kim ◽  
Hyun Soo Kim ◽  
Wonkeun Song ◽  
...  

The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genesmecAandvanAwere correctly detected by the BC-GP assay, while the extended-spectrumβ-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.


2019 ◽  
Vol 15 (7) ◽  
pp. 1598-1608
Author(s):  
Hongna Liu ◽  
Kathryn Heflin ◽  
Jian Han ◽  
Matt Conover ◽  
Leslie Wagner ◽  
...  

We utilized Amplicon-Rescue Multiplex PCR (ARM-PCR) and microarray hybridization to develop and validate the iC-GPC Assay, a multiplexed, in vitro diagnostic test that identifies five of the most common gram positive bacteria and three clinically relevant resistance markers associated with bloodstream infections (BSI). The iC-GPC Assay is designed for use with the iC-System™, which automates sample preparation, ARM-PCR, and microarray detection within a closed cassette. Herein, we determined the limit of detection for each of the iC-GPC Assay targets to be between 3.0 × 105–1.7 × 107 CFU/mL, well below clinically relevant bacterial levels for positive blood cultures. Additionally, we tested 106 strains for assay inclusivity and observed a target performance of 99.4%. 95 of 96 non-target organisms tested negative for cross-reactivity, thereby assuring a high level of assay specificity. Overall performance above 99% was observed for iC-GPC Assay reproducibility studies across multiple sites, operators and cassette lots. In conclusion, the iC-GPC Assay is capable of accurately and rapidly identifying bacterial species and resistance determinants present in blood cultures containing gram positive bacteria. Utilizing molecular diagnostics like the iC-GPC Assay will decrease time to treatment, healthcare costs, and BSI-related mortality.


2011 ◽  
Vol 55 (5) ◽  
pp. 1883-1890 ◽  
Author(s):  
Tsuimin Tsai ◽  
Hsiung-Fei Chien ◽  
Tze-Hsien Wang ◽  
Ching-Tsan Huang ◽  
Yaw-Bee Ker ◽  
...  

ABSTRACTAntimicrobial photodynamic inactivation (PDI) was shown to be a promising treatment modality for microbial infections. This study explores the effect of chitosan, a polycationic biopolymer, in increasing the PDI efficacy against Gram-positive bacteria, includingStaphylococcus aureus,Staphylococcus epidermidis,Streptococcus pyogenes, and methicillin-resistantS. aureus(MRSA), as well as the Gram-negative bacteriaPseudomonas aeruginosaandAcinetobacter baumannii. Chitosan at <0.1% was included in the antibacterial process either by coincubation with hematoporphyrin (Hp) and subjection to light exposure to induce the PDI effect or by addition after PDI and further incubation for 30 min. Under conditions in which Hp-PDI killed the microbe on a 2- to 4-log scale, treatment with chitosan at concentrations of as low as 0.025% for a further 30 min completely eradicated the bacteria (which were originally at ∼108CFU/ml). Similar results were also found with toluidine blue O (TBO)-mediated PDI in planktonic and biofilm cells. However, without PDI treatment, chitosan alone did not exert significant antimicrobial activity with 30 min of incubation, suggesting that the potentiated effect of chitosan worked after the bacterial damage induced by PDI. Further studies indicated that the potentiated PDI effect of chitosan was related to the level of PDI damage and the deacetylation level of the chitosan. These results indicate that the combination of PDI and chitosan is quite promising for eradicating microbial infections.


2021 ◽  
Vol 8 (2) ◽  
pp. 128-131
Author(s):  
Asmabanu Shaikh ◽  
Rachana Patel ◽  
Anant Marathe

The symptomatology and severity of covid-19 ranges widely depending on stage of infection. Most of the patients with mild to moderate disease can be managed without hospitalization. The patients with risk factors are likely to progress to severe disease. Patients developing secondary blood stream infections require longer hospital stay and are likely to develop fatal disease. The antibiotic selection is key to successful treatment of secondary BSI. This is cross-sectional study of 166 COVID 19 patients admitted to ICU of Parul Sevashram Hospital who developed sepsis like syndrome and were subjected to blood culture.Blood cultures were performed of all the patients developing sepsis like syndrome. IDSA guidelines were followed during blood collection for culture. Blood cultures were monitored on automated blood culture system. ID and susceptibility of all the isolates were performed on automated system (VITEK 2).A total of 1915 patients were reported RT-PCR positive for SARS nCoV2 during the period of 1st March2020 to 30 October 2020. 452 patients needed hospitalization based on their Oxygen saturation and co-morbidities. Out of 452, 166 patients developed sepsis like syndrome and were subjected to blood culture. The Blood culture positivity was 37/166 (22.28%). Gram positive bacteria were found in 48.64% while gram negative bacteria were 43.24%. The Enterococcus was the most common Gram positive bacterial isolates in patients. Candida was isolated in 2/37 positive blood cultures. Gram negative bacteria were isolated mostly amongst those patients who were on Ventilator. Most of the Gram positive bacteria were sensitive to Clindamycin, Linezolid, Vancomycin, Daptomycin and Teicoplanin.The incidence rate of BSI was high. Early secondary blood stream infections were mostly endogenous. Enterococcus was the most common amongst Gram positive bacteria. Gram negative secondary bacterial infections were more common with patients on ventilator. The susceptibility pattern would help in decision making of empiric antibiotic therapy. Interestingly as described by some authors earlier the relationship between SARS nCoV 2 and Enterococci needs to be studied further.


Sign in / Sign up

Export Citation Format

Share Document