scholarly journals Incidence of secondary blood stream infections in Covid 19 (SARS-nCoV II.) patients

2021 ◽  
Vol 8 (2) ◽  
pp. 128-131
Author(s):  
Asmabanu Shaikh ◽  
Rachana Patel ◽  
Anant Marathe

The symptomatology and severity of covid-19 ranges widely depending on stage of infection. Most of the patients with mild to moderate disease can be managed without hospitalization. The patients with risk factors are likely to progress to severe disease. Patients developing secondary blood stream infections require longer hospital stay and are likely to develop fatal disease. The antibiotic selection is key to successful treatment of secondary BSI. This is cross-sectional study of 166 COVID 19 patients admitted to ICU of Parul Sevashram Hospital who developed sepsis like syndrome and were subjected to blood culture.Blood cultures were performed of all the patients developing sepsis like syndrome. IDSA guidelines were followed during blood collection for culture. Blood cultures were monitored on automated blood culture system. ID and susceptibility of all the isolates were performed on automated system (VITEK 2).A total of 1915 patients were reported RT-PCR positive for SARS nCoV2 during the period of 1st March2020 to 30 October 2020. 452 patients needed hospitalization based on their Oxygen saturation and co-morbidities. Out of 452, 166 patients developed sepsis like syndrome and were subjected to blood culture. The Blood culture positivity was 37/166 (22.28%). Gram positive bacteria were found in 48.64% while gram negative bacteria were 43.24%. The Enterococcus was the most common Gram positive bacterial isolates in patients. Candida was isolated in 2/37 positive blood cultures. Gram negative bacteria were isolated mostly amongst those patients who were on Ventilator. Most of the Gram positive bacteria were sensitive to Clindamycin, Linezolid, Vancomycin, Daptomycin and Teicoplanin.The incidence rate of BSI was high. Early secondary blood stream infections were mostly endogenous. Enterococcus was the most common amongst Gram positive bacteria. Gram negative secondary bacterial infections were more common with patients on ventilator. The susceptibility pattern would help in decision making of empiric antibiotic therapy. Interestingly as described by some authors earlier the relationship between SARS nCoV 2 and Enterococci needs to be studied further.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Seok Kim ◽  
Go-Eun Kang ◽  
Han-Sung Kim ◽  
Hyun Soo Kim ◽  
Wonkeun Song ◽  
...  

The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genesmecAandvanAwere correctly detected by the BC-GP assay, while the extended-spectrumβ-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.


2015 ◽  
Vol 22 (12) ◽  
pp. 1617-1623
Author(s):  
Muhammad Saeed ◽  
Farhan Rasheed ◽  
Fouzia Ashraf ◽  
Shagufta Iram ◽  
Shahida Hussain ◽  
...  

Blood stream infections (BSI) remain a major cause of debility and death aroundthe world. BSI accounts for 10-20% of all Nosocomial infections. Empirical antimicrobials arebased on the susceptibility pattern of the pathogens isolated in a specific institute from timeto time. We have conducted this study only on cardiac Patients over two & half years of studyduration. Study design: Cross sectional study. Settings: Microbiology Department, Allama IqbalMedical College/Jinnah Hospital, Lahore. Study Period: January 2013 to July 2015. Materials& Methods: A total of 5411 blood culture specimens were collected from cardiac patientsincluding patients admitted to cardiology ward, coronary care unit (CCU), pre-operative andpost-operative cardiac surgery patients. The bottles containing BHI broth were incubated andwere subcultured after 24 hours, 72 hours, 120 hours, and 168 hours on blood and MacConkeyagars. Isolates were further identified with the help of Gram staining, biochemical reactionsand rapid tests like catalase, oxidase, coagulase, Analytical Profile Index (API) 20E and API20NE. Antimicrobial susceptibility of the isolate was carried out on Mueller-Hinton agar byModified Kirby Bauer disc diffusion technique according to the isolate as per recommendationsof Clinical and Laboratory Standards Institute (CLSI) guidelines 2013. Results: Out of total 5411patients, 3958(73.14%) were male, 1453(26.85%) were females. Out of total 5411 Specimens,only 486 (8.98%) were positive for bacterial growth. Out of total 486 positive blood cultures,261 (53.71%) were Gram positive isolates and 225 (46.29%) were Gram negative isolates.Out 486 positive blood cultures, 96 (19.75%) were from cardiology ward, 67 (13.78%) werefrom CCU, 113 (23.25%) were from pre operative cardiac surgery ward, 210 (43.20%) werefrom post operative cardiac surgery ward. Among Gram positives, Staphylococcus Specieswere most common organism isolated from 246 (50.61%) blood culture specimens. AmongGram negatives, Pseudomonas aeruginosa and E.coli were predominant organisms, isolatedfrom 81(16.66%) and 72(14.81%) blood culture specimens respectively. Conclusion: GramPositive isolates were more common as compared to Gram negative isolates. Vancomycin andLinezolid were the most effective drugs among Gram positive isolates. Piperacillin-Tazobactamwas most potent antimicrobial against Pseudomonas aeruginosa. For coli forms Tigecyclinewas most effective drug.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4564-4564
Author(s):  
Marek Seweryn ◽  
Urszula Jarosz ◽  
Malgorzata Krawczyk-Kulis ◽  
Miroslaw Markiewicz ◽  
Grzegorz Helbig ◽  
...  

Abstract Abstract 4564 Background: Infectious complications remain an important cause of morbidity and mortality in the early phase after hematopoietic stem cell transplantation (HSCT). Aim: The aim of this study was to assess the frequency of positive blood cultures and its potential correlation with different studied parameters in large patient population studied in the first 30 days after HSCT. Material and methods: 431 patients at median age of 47 years (range 18–85) transplanted between 2009–2011 for hematological and non-hematological malignancies were included in our analysis. There were 242 males and 189 females. Results: The indications for autologous and allogeneic HSCT were following: AML – 105 (24%), NHL – 86 (20%), MM – 75 (17,5%), HL – 48 (11%), ALL – 40 (9%), MDS – 17 (4%), AA – 15 (3,5%), CML – 12 (2,8%), PNH – 11 (2,6%), connective tissue diseases – 5 (1,2%), CLL – 3 (0,7%) and other – 14 (3,2%). The following transplant procedures were performed: ABCT – 213 (49%), ABMT – 3 (0,7%), alloBCT – 56 (13%), alloBMT – 21 (5%), URDBCT – 87 (20%), URDBMT – 51 (12%). Pre-transplant ATG and anti-CD52 antibody were used in 142 (33%) and 5 (1.2%) patients, respectively. Amongst 431 transplanted patients, 495 blood cultures were collected; range 0–8 (median 1). Eighty seven blood samples were positive (17,6%). The following pathogens were detected: gram-positive bacteria in 48% (n=42), gram-negative bacteria in 38% (n=33), fungi in 1% (n=1) and both G(+) and G(−) bacteria in 13%(n=11). The gram-positive bacteria included: Staphylococcus epidermidis: 21 (50%), Micrococcus spp: 4 (9%), Enterococcus faecium: 3 (7%), Enterococcus faecalis: 3 (7%), Streptococcus haemolyticus: 3 (7%). The following gram-negative bacteria were found: Enterobacter cloacae: 10 (30%), Escherichia coli: 7 (21%), Pseudomonas aeruginosa: 5 (15%), Klebsiella pneumonia: 5 (15%). Candida albicans was detected only in one case. The use of ATG was associated with higher number of total blood draw and positive blood cultures. No significant correlation was found between the specific pathogen and the use of ATG. Male gender was associated with significantly higher number of blood sampling and with tendency to higher number of positive blood cultures. The type of conditioning regimen, the source of stem cell and the donor origin (auto vs sibling vs unrelated) did not influence the number of positive blood culture. There was tendency to higher number of blood intake, but not positive blood culture in patients transplanted in NR if compared to PR or CR. Conclusions: Positive blood cultures were positive in about 20% of patients after HSCT. Only pre-transplant ATG use was associated with the higher number of positive blood culture. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Andrew S. Tseng ◽  
Sabirah N. Kasule ◽  
Felicia Rice ◽  
Lanyu Mi ◽  
Lynn Chan ◽  
...  

ABSTRACTBackgroundThere is growing interest in the use of rapid blood culture identification (BCID) panels in antimicrobial stewardship programs (ASP). While many studies have looked at its clinical and economic utility, its comparative utility in gram-positive and gram-negative blood stream infections (BSI) have not been as well characterized.MethodsThe study was a quasi-experimental retrospective study at the Mayo Clinic in Phoenix, Arizona. All adult patients with positive blood cultures before BCID implementation (June 2015 to December 2015) and after BCID implementation (June 2016 to December 2016) were included. The outcomes of interest included: time to first appropriate antibiotic escalation, time to first appropriate antibiotic de-escalation, time to organism identification, LOS, infectious disease consultation, discharge disposition, and in-hospital mortality.ResultsIn total, 203 patients were included in this study. There was a significant difference in the time to organism identification between pre- and post-BCID cohorts (27.1h vs. 3.3h, p<0.0001). BCID did not significantly reduce the time to first appropriate antimicrobial escalation or de-escalation for either GP-BSIs or GN-BSIs. Providers were more likely to escalate antimicrobial therapy in GP-BSIs after gram stain and more likely to de-escalate therapy in GN-BSIs after susceptibilities. While there were no significant differences in changes in antimicrobial therapy after organism identification by BCID, over a quarter of providers (28.1%) made changes after organism identification.ConclusionsWhile BCID significantly reduced the time to identification for both GP-BSIs and GN-BSIs, BCID did not reduce the time to first appropriate antimicrobial escalation and de-escalation.


Author(s):  
Måns Ullberg ◽  
Volkan Özenci

Abstract Rapid identification and antimicrobial susceptibility testing remain a crucial step for early efficient therapy of bloodstream infections. Traditional methods require turnaround times of at least 2 days, while rapid procedures are often associated with extended hands-on time. The Accelerate Pheno™ System provides microbial identification results within 90 min and susceptibility data in approximately 7 h directly from positive blood cultures with only few minutes of hands-on time. The aim of this study was, therefore, to evaluate the performance of the Accelerate Pheno™ System in identification and antimicrobial susceptibility testing of both Gram-positive and Gram-negative bacteria directly from clinical blood culture samples. We analyzed 108 and 67 blood culture bottles using the Accelerate PhenoTest™ BC kit with software version v1.0 and the FDA-cleared version v1.2, respectively. Reliable identification was achieved for Enterobacteriaceae, staphylococci, and enterococci, with 76/80 (95%), 42/46 (91%), and 10/11 (91%) correct identifications. Limitations were observed in the identification of streptococci, including Streptococcus pneumoniae and Streptococcus pyogenes, and coagulase-negative staphylococci. Antimicrobial susceptibility results for Enterobacteriaceae, for amikacin, ertapenem, ciprofloxacin, gentamicin, meropenem, and piperacillin-tazobactam ranged between 86 and 100% categorical agreement. Using v1.2, results for ceftazidime showed 100% concordance with the reference method. For staphylococci, the overall performance reached 92% using v1.2. Qualitative tests for detection of methicillin or macrolide-lincosamide-streptogramin B (MLSB) resistance caused major and very major errors for isolates. Overall, the present data show that the Accelerate Pheno™ system can, in combination with Gram stain, be used as a rapid complementation to standard microbial diagnosis of bloodstream infections.


2018 ◽  
Vol 5 (12) ◽  
Author(s):  
Andrew S Tseng ◽  
Sabirah N Kasule ◽  
Felicia Rice ◽  
Lanyu Mi ◽  
Lynn Chan ◽  
...  

Abstract Background There is growing interest in the use of rapid blood culture identification (BCID) in antimicrobial stewardship programs (ASPs). Although many studies have looked at its clinical and economic utility, its comparative utility in gram-positive and gram-negative blood stream infections (BSIs) has not been as well characterized. Methods The study was a quasi-experimental retrospective study at the Mayo Clinic in Phoenix, Arizona. All adult patients with positive blood cultures before BCID implementation (June 2015 to December 2015) and after BCID implementation (June 2016 to December 2016) were included. The outcomes of interest included time to first appropriate antibiotic escalation, time to first appropriate antibiotic de-escalation, time to organism identification, length of stay, infectious diseases consultation, discharge disposition, and in-hospital mortality. Results In total, 203 patients were included in this study. There was a significant difference in the time to organism identification between the pre- and post-BCID cohorts (27.1 hours vs 3.3 hours, P &lt; .0001). BCID did not significantly reduce the time to first appropriate antimicrobial escalation or de-escalation for either gram-positive BSIs (GP-BSIs) or gram-negative BSIs (GN-BSIs). Providers were more likely to escalate antimicrobial therapy in GP-BSIs after gram stain and more likely to de-escalate therapy in GN-BSIs after susceptibilities. Although there were no significant differences in changes in antimicrobial therapy for organism identification by BCID vs traditional methods, more than one-quarter of providers (28.1%) made changes after organism identification. There were no differences in hospital length of stay or in-hospital mortality comparing pre- vs post-BCID. Conclusions Although BCID significantly reduced the time to identification for both GP-BSIs and GN-BSIs, BCID did not reduce the time to first appropriate antimicrobial escalation and de-escalation.


Author(s):  
Seon Young Kim ◽  
Yun Ji Hong ◽  
Sang Mee Hwang ◽  
Taek Soo Kim ◽  
Jae-Seok Kim ◽  
...  

AbstractThe Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images.At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results.With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls asWith help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria.


2020 ◽  
Author(s):  
Yating Ma ◽  
Ming Yang ◽  
Jinfeng Bao ◽  
Chengbin Wang

Abstract Background: The incidence of bloodstream infection caused by bacteremia is more common in patients with hematological malignancy. It is important to distinguish infectious episodes from non-infectious episodes. The present study was aimed to describe epidemiology and clinical indexes for in-hospital infection of hematological malignancy patients.Methods: Single-center retrospective research was performed on hematological malignancy patients admitted to our hospital from July 2015 to March 2018. Laboratory and clinical information from 322 febrile patients were acquired. These episodes were divided by blood culture results into two groups: (1) blood culture positive group, (2) blood culture negative group.Results: In the 322 febrile cases, 81 (25.2%) patients were blood culture positive, and among them, Gram-negative bacteria (51.9%) were more isolated than Gram-positive bacteria (32.1%) and fungi (7.4%). Gram-negative bacteria were more likely to have a drug resistance than Gram-positive bacteria. Independent risk factors revealed that patients with complications, high levels of procalcitonin (PCT), glucose, interleukin-6 (IL-6) and d-dimer (D-D), and low concentration of albumin were correlated with occurrence of infection. PCT, IL-6 and D-D performed well in differentiating not only the infection group from the non-infection group, but also in the Gram-negative group from the Gram-positive group with the areas under the curve all above 0.75.Conclusions: We analyzed the risk factors for bloodstream infection in patients with hematological malignancy, the distribution of bacteria, antibiotics resistance and the changes of clinical parameters. This single-center retrospective study may provide clinicians insight to the diagnosis and treatment of infection.


Author(s):  
Nelly Elfrida Samosir ◽  
Ricke Loesnihari ◽  
Adi Koesoema Aman

IntroductionBacteremia causes a high mortality rate. Detection of bacteremia is needed as quickly as possible. The gold standard for bacteremia is blood culture which takes between 24-48 hours. Procalcitonin (PCT) is a marker of infection that is caused by bacteria that can be detected quickly in 2-6 hours. Time to positivity (TTP) blood culture is affected by the initial amount of bacteria and the addition of procalcitonin stimulated by bacteria that causes bacteremia where short TTP and high PCT show bad clinical conditions. Materials and MethodsAnalitical cross sectional research on patients with bacteremia. Fourty six bacteremia cases become the sample of research. Time to Positivity is calculated with Bactec 9050 and Procalcitonin is analyzed with mini VIDAS B.R.A.H.M.S. Examination is conducted in Department of Clinical Pathology FK-USU/ Installation of Clinical Pathology of RSUP H. Adam Malik, Medan, June – October 2016. ResultsThere was significant correlation between Time to Positivity blood culture and procalcitonin on bacteremia patients (p<0.05). There was no significant correlation between Time to Positivity and procalcitonin on bacteremia which was caused by gram-positive bacteria or gram-negative bacteria (p>0.05). Procalcitonin was significantly higher on bacteremia which was caused by gram-negative bacteria compared to gram-positive bacteria (p<0.05). ConclusionThere was significant correlation between Time to Positivity blood culture and procalcitonin on bacteremia patients. Significantly higher levels of procalcitonin in cases of bacteremia are more likely to be caused by Gram-negative bacteria than Gram-positive bacteria


Sign in / Sign up

Export Citation Format

Share Document