scholarly journals Diagnostic Accuracy and Utility of FluoroType MTBDR, a New Molecular Assay for Multidrug-Resistant Tuberculosis

2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Margaretha de Vos ◽  
Brigitta Derendinger ◽  
Tania Dolby ◽  
John Simpson ◽  
Paul D. van Helden ◽  
...  

ABSTRACT Most cases of multidrug-resistant (MDR) tuberculosis (TB) are never diagnosed (328,300 of the ∼490,000 cases in 2016 were missed). The Xpert MTB/RIF assay detects resistance only to rifampin, despite ∼20% of rifampin-resistant cases being susceptible to isoniazid (a critical first-line drug). Consequently, many countries require further testing with the GenoType MTBDRplus assay. However, MTBDRplus is not recommended for use on smear-negative specimens, and thus, many specimens require culture-based drug susceptibility testing. Furthermore, MTBDRplus requires specialized expertise, lengthy hands-on time, and significant laboratory infrastructure and interpretation is not automated. To address these gaps, we evaluated the accuracy of the FluoroType MTBDR (FluoroType) assay. Sputa from 244 smear-positive and 204 smear-negative patients with presumptive TB (Xpert MTB positive, n = 343) were tested. Culture and MTBDRplus on isolates served as reference standards (for active TB and MDR-TB, respectively). Sanger sequencing and MTBDRplus, both of which were performed on sputa, were used to resolve discrepancies. The sensitivity of FluoroType for the detection of M. tuberculosis complex was 98% (95% confidence interval [CI], 95 to 99%) and 92% (95% CI, 84 to 96%) for smear-positive and smear-negative specimens, respectively (232/237 versus 90/98 specimens; P < 0.009). The sensitivity and specificity for smear-negative specimens were 100% and 97%, respectively, for rifampin resistance; 100% and 98%, respectively, for isoniazid resistance; and 100% and 100%, respectively, for MDR-TB. FluoroType identified 98%, 97%, and 97% of the rpoB, katG, and inhA promoter mutations, respectively. FluoroType has excellent sensitivity with sputa equivalent to that of MTBDRplus with the isolates and can provide rapid drug susceptibility testing for rifampin and isoniazid. In addition, the capacity of FluoroType to simultaneously identify virtually all mutations in the rpoB, katG, and inhA promoter may be useful for individualized treatment regimens.

2021 ◽  
Vol 25 (10) ◽  
pp. 839-845
Author(s):  
M. Ejo ◽  
A. Van Deun ◽  
A. Nunn ◽  
S. Meredith ◽  
S. Ahmed ◽  
...  

OBJECTIVES: To assess the performance of the GenoType MTBDRsl v1, a line-probe assay (LPA), to exclude baseline resistance to fluoroquinolones (FQs) and second-line injectables (SLIs) in the Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB 1 (STREAM 1) trial.METHODS: Direct sputum MTBDRsl results in the site laboratories were compared to indirect phenotypic drug susceptibility testing (pDST) results in the central laboratory, with DNA sequencing as a reference standard.RESULTS: Of 413 multidrug-resistant TB (MDR-TB) patients tested using MTBDRsl and pDST, 389 (94.2%) were FQ-susceptible and 7 (1.7%) FQ-resistant, while 17 (4.1%) had an inconclusive MTBDRsl result. For SLI, 372 (90.1%) were susceptible, 5 (1.2%) resistant and 36 (8.7%) inconclusive. There were 9 (2.3%) FQ discordant pDST/MTBDRsl results, of which 3 revealed a mutation and 5 (1.3%) SLI discordant pDST/MTBDRsl results, none of which were mutants on sequencing. Among the 17 FQ- and SLI MTBDRsl-inconclusive samples, sequencing showed 1 FQ- and zero SLI-resistant results, similar to frequencies among the conclusive MTBDRsl. The majority of inconclusive MTBDRsl results were associated with low bacillary load samples (acid-fast bacilli smear-negative or scantily positive) compared to conclusive results (P < 0.001).CONCLUSION: MTBDRsl can facilitate the rapid exclusion of FQ and SLI resistances for enrolment in clinical trials.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Elina Maharjan ◽  
Narayan Dutt Pant ◽  
Sanjeev Neupane ◽  
Jyoti Amatya ◽  
Bhawana Shrestha

The main aims of this study were to study the patterns of mutations in rpoB, katG, and inhA genes in Mycobacterium tuberculosis strains isolated from patients from Nepal and to evaluate the performance of genotype MTBDRplus assay, taking conventional drug susceptibility testing as gold standard for diagnosis of MDR-TB. A total of 69 Mycobacterium tuberculosis strains isolated from 73 smear positive sputum samples from patients suspected of suffering from multidrug-resistant tuberculosis were used in our study. The drug susceptibility pattern of Mycobacterium tuberculosis isolated from these sputum specimens was determined by using genotype MTBDRplus assay taking conventional drug susceptibility testing as reference. The sensitivity and specificity of the genotype MTBDRplus assay for the detection of MDR-TB were found to be 88.7% and 100%, respectively. 88.7% of the rifampicin resistant isolates had mutations in rpoB gene. Similarly, 79.7% and 9.4% of isoniazid resistant isolates had mutations in katG and inhA genes, respectively. Genotype MTBDRplus assay was found to be very rapid and highly sensitive and specific method for diagnosis of MDR-TB and will be very helpful for early diagnosis of MDR-TB in high tuberculosis burden countries.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Chen ◽  
Zhengan Yuan ◽  
Xin Shen ◽  
Jie Wu ◽  
Zheyuan Wu ◽  
...  

Introduction. Second-line antituberculosis drugs (SLDs) are used for treating multidrug-resistant tuberculosis (MDR-TB). Prolonged delays before confirming MDR-TB with drug susceptibility testing (DST) could result in transmission of drug-resistant strains and inappropriate use of SLDs, thereby increasing the risk of resistance to SLDs. This study investigated the diagnostic delay in DST and prevalence of baseline SLD resistance in Shanghai and described the distribution of SLD resistance with varied delays to DST.Methods. All registered patients from 2011 to 2013 in Shanghai were enrolled. Susceptibility to ofloxacin, amikacin, kanamycin, and capreomycin was tested. Total delay in DST completion was measured from the onset of symptoms to reporting DST results.Results. Resistance to SLDs was tested in 217 of the 276 MDR-TB strains, with 118 (54.4%) being resistant to at least one of the four SLDs. The median total delay in DST was 136 days. Patients with delay longer than median days were roughly twice more likely to have resistance to at least one SLD (OR 2.22, 95% CI 1.19–4.11).Conclusions. During prolonged delay in DST, primary and acquired resistance to SLDs might occur more frequently. Rapid diagnosis of MDR-TB, improved nosocomial infection controls, and regulated treatment are imperative to prevent SLD resistance.


2021 ◽  
Vol 30 (3) ◽  
pp. 143-151
Author(s):  
Noha S. Soliman ◽  
Sahar M. Khairat ◽  
Mohamed Abdullah ◽  
Yasmin Adel El-Mahdy

Background: Multidrug-resistant tuberculosis (MDR-TB) and infections by nontuberculous mycobacteria (NTM) are diseases of major public health concern. Objective: The aim of the present work is to study the prevalence and patterns of MDRTB as well as the characterization of isolated NTM species. Methodology: All samples (1069) were subjected to smear microscopy, culture on Lowenstein-Jensen (LJ) media, and phenotypic drug susceptibility testing (DST) of MTB to isoniazid (INH), rifampin (RF), streptomycin (S), and ethambutol (E). GeneXpert was used for direct detection of MTB and RF resistance. Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS) was utilized for characterizing isolated NTM species. Results: M.tuberculosis (MTB) was isolated at a rate of 95.3% (1019/1069). MDR-TB was detected at rate of 7.16% with significant patterns for INH + RF + S + E (46.5%) and INR + RF (24.6%) (P-value <0.001). RF resistance was detected at a rate of 27.2% by GeneXpert. Seven NTM species (0.6%) were isolated in culture of which M.porcinum and M.fortuitum had confident identification by MALDI-TOF (score ≥1.8). Conclusion: MDR-TB rate was found to be 7.16% with significant dominance for INH + RF + S + E and INR + RF resistance patterns, while NTM rate was 0.6%.


2019 ◽  
Vol 147 ◽  
Author(s):  
R. S. Salvato ◽  
S. Schiefelbein ◽  
R. B. Barcellos ◽  
B. M. Praetzel ◽  
I. S. Anusca ◽  
...  

AbstractTuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131Mycobacterium tuberculosis (M.tb)DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of thekatG,inhA andrpoB genes and RDRiosublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRiodeletion was observed in 42 (32%) of theM.tbisolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%)M.tbisolates, we found mutations associated with rifampicin (RIF) resistance inrpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance inkatG andinhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in therpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.


2016 ◽  
Vol 54 (12) ◽  
pp. 3022-3027 ◽  
Author(s):  
Sabine Hofmann-Thiel ◽  
Nikolay Molodtsov ◽  
Uladzimir Antonenka ◽  
Harald Hoffmann

The Abbott RealTi m e MTB (RT MTB) assay is a new automated nucleic acid amplification test for the detection of Mycobacterium tuberculosis complex (MTBC) in clinical specimens. In combination with the RealTi m e MTB INH/RIF (RT MTB INH/RIF) resistance assay, which can be applied to RT MTB-positive specimens as an add-on assay, the tests also indicate the genetic markers of resistance to isoniazid (INH) and rifampin (RIF). We aimed to evaluate the diagnostic sensitivity and specificity of RT MTB using different types of respiratory and extrapulmonary specimens and to compare performance characteristics directly with those of the FluoroType MTB assay. The resistance results obtained by RT MTB INH/RIF were compared to those from the GenoType MTBDR plus and from phenotypic drug susceptibility testing. A total of 715 clinical specimens were analyzed. Compared to culture, the overall sensitivity of RT MTB was 92.1%; the sensitivity rates for smear-positive and smear-negative samples were 100% and 76.2%, respectively. The sensitivities of smear-negative specimens were almost identical for respiratory (76.3%) and extrapulmonary (76%) specimens. Specificity rates were 100% and 95.8% for culture-negative specimens and those that grew nontuberculous mycobacteria, respectively. RT MTB INH/RIF was applied to 233 RT MTB-positive samples and identified resistance markers in 7.7% of samples. Agreement with phenotypic and genotypic drug susceptibility testing was 99.5%. In conclusion, RT MTB and RT MTB INH/RIF allow for the rapid and accurate diagnosis of tuberculosis (TB) in different types of specimens and reliably indicate resistance markers. The strengths of this system are the comparably high sensitivity with paucibacillary specimens, its ability to detect INH and RIF resistance, and its high-throughput capacities.


2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Kingsley King-Gee Tam ◽  
Kenneth Siu-Sing Leung ◽  
Gilman Kit-Hang Siu ◽  
Kwok-Chiu Chang ◽  
Samson Sai-Yin Wong ◽  
...  

ABSTRACT An in-house-developed pncA sequencing assay for analysis of pyrazinamide (PZA) resistance was evaluated using 162 archived Mycobacterium tuberculosis complex (MTBC) isolates with phenotypic PZA susceptibility profiles that were well defined by analysis of Bactec MGIT 960 PZA kit and PZase activity data. Preliminary results showed 100% concordance between pncA sequencing and phenotypic PZA drug susceptibility test (DST) results among archived isolates. Also, 637 respiratory specimens were prospectively collected, and 158 were reported as MTBC positive by the Abbott Realtime MTB assay (96.3% sensitivity [95% confidence interval {CI}: 92.2% to 98.7%]; 100% specificity [95% CI: 99.2% to 100.0%]). Genotypic and phenotypic PZA resistance profiles of these 158 MTBC-positive specimens were analyzed by pncA sequencing and Bactec MGIT 960 PZA kit, respectively. For analysis of PZA resistance, pncA sequencing detected pncA mutations in 5/5 (100%) phenotypic PZA-resistant respiratory specimens within 4 working days. No pncA mutations were detected among PZA-susceptible specimens. Combining archived isolates with prospective specimens, 27 were identified as phenotypic PZA resistant with pncA mutation. Among these 27 samples, 6/27 (22.2%) phenotypic PZA-resistant strains carried novel pncA mutations without rpsA and panD mutations. These included 5 with mutations (a deletion [Del] at 383T [Del383T], Del 380 to 390, insertion of A [A Ins] at position 127, A Ins at position 407, and G Ins at position 508) in pncA structural genes and 1 with a mutation (T-12C) at the pncA promoter region. All six of these strains had no or reduced PZase activities, indicating that the novel mutations might confer PZA resistance. Additionally, 25/27 phenotypic PZA-resistant strains were confirmed multidrug-resistant tuberculosis (MDR-TB) strains. As PZA is commonly used in MDR-TB treatment regimens, direct pncA sequencing will rapidly detect PZA resistance and facilitate judicious use of PZA in treating PZA-susceptible MDR-TB.


2020 ◽  
Vol 51 (6) ◽  
pp. 606-613
Author(s):  
Ye-Cheng Zhou ◽  
Shu-Mei He ◽  
Zi-Lu Wen ◽  
Jun-Wei Zhao ◽  
Yan-Zheng Song ◽  
...  

Abstract Rapid and accurate diagnosis of multidrug-resistant tuberculosis (MDR-TB) is important for timely and appropriate therapy. In this study, a rapid and easy-to-perform molecular test that integrated polymerase chain reaction (PCR) amplification and a specific 96-well microplate hybridization assay, called PCR-ELISA (enzyme-linked immunosorbent assay), were developed for detection of mutations in rpoB, katG, and inhA genes responsible for rifampin (RIF) and isoniazid (INH) resistance and prediction of drug susceptibility in Mycobacterium tuberculosis clinical isolates. We evaluated the utility of this method by using 32 multidrug-resistent (MDR) isolates and 22 susceptible isolates; subsequently, we compared the results with data obtained by conventional drug susceptibility testing and DNA sequencing. The sensitivity and specificity of the PCR-ELISA test were 93.7% and 100% for detecting RIF resistance, and 87.5% and 100% for detecting INH resistance, respectively. These results were comparable to those yielded by commercially available molecular tests such as the GenoType MTBDRplus assay. Based on the aforementioned results, we conclude that the PCR-ELISA microplate hybridization assay is a rapid, inexpensive, convenient, and reliable test that will be useful for rapid diagnosis of MDR-TB, for improved clinical care.


Sign in / Sign up

Export Citation Format

Share Document