scholarly journals Polymorphism of the Human Immunodeficiency Virus Type 1 (HIV-1) Protease Gene and Response of HIV-1-Infected Patients to a Protease Inhibitor

1999 ◽  
Vol 37 (9) ◽  
pp. 2910-2912 ◽  
Author(s):  
Philippe Bossi ◽  
Mireille Mouroux ◽  
Anne Yvon ◽  
François Bricaire ◽  
Henri Agut ◽  
...  

In order to analyze the impact of protease gene polymorphism on response to regimens containing a protease inhibitor, the entire protease coding domain from 58 human immunodeficiency virus type 1 (HIV-1)-infected patients who were protease inhibitor naive was sequenced before therapy was started. Plasma HIV-1 RNA levels were measured at baseline and at month 3 and month 6 after treatment. All patients were treated with a combination of two reverse transcriptase inhibitors and a protease inhibitor (saquinavir EOF [n = 28], ritonavir [n = 16], or indinavir [n = 14]). Before treatment, 30 different positions whose codons differed from the subtype B consensus sequence were observed. Major mutations associated with protease inhibitor resistance were not observed. No statistical correlation between the number of amino acid differences and the treatment efficacy at month 3 (−2.4 log) or month 6 (−2.7 log) was observed. At baseline, genotypic analysis of the HIV-1 protease gene of patients who have never received a protease inhibitor does not allow prediction of the efficacy of regimens containing a protease inhibitor.

2012 ◽  
Vol 93 (12) ◽  
pp. 2625-2634 ◽  
Author(s):  
Elena Capel ◽  
Glòria Martrus ◽  
Mariona Parera ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


1998 ◽  
Vol 72 (7) ◽  
pp. 5680-5698 ◽  
Author(s):  
Feng Gao ◽  
David L. Robertson ◽  
Catherine D. Carruthers ◽  
Sandra G. Morrison ◽  
Bixi Jian ◽  
...  

ABSTRACT Non-subtype B viruses cause the vast majority of new human immunodeficiency virus type 1 (HIV-1) infections worldwide and are thus the major focus of international vaccine efforts. Although their geographic dissemination is carefully monitored, their immunogenic and biological properties remain largely unknown, in part because well-characterized virological reference reagents are lacking. In particular, full-length clones and sequences are rare, since subtype classification is frequently based on small PCR-derived viral fragments. There are only five proviral clones available for viruses other than subtype B, and these represent only 3 of the 10 proposed (group M) sequence subtypes. This lack of reference sequences also confounds the identification and analysis of mosaic (recombinant) genomes, which appear to be arising with increasing frequency in areas where multiple sequence subtypes cocirculate. To generate a more representative panel of non-subtype B reference reagents, we have cloned (by long PCR or lambda phage techniques) and sequenced 10 near-full-length HIV-1 genomes (lacking less than 80 bp of long terminal repeat sequences) from primary isolates collected at major epicenters of the global AIDS pandemic. Detailed phylogenetic analyses identified six that represented nonrecombinant members of HIV-1 subtypes A (92UG037.1), C (92BR025.8), D (84ZR085.1 and 94UG114.1), F (93BR020.1), and H (90CF056.1), the last two comprising the first full-length examples of these subtypes. Four others were found to be complex mosaics of subtypes A and C (92RW009.6), A and G (92NG083.2 and 92NG003.1), and B and F (93BR029.4), again emphasizing the impact of intersubtype recombination on global HIV-1 diversification. Although a number of clones had frameshift mutations or translational stop codons in major open reading frames, all the genomes contained a complete set of genes and three had intact genomic organizations without inactivating mutations. Reconstruction of one of these (94UG114.1) yielded replication-competent virus that grew to high titers in normal donor peripheral blood mononuclear cell cultures. This panel of non-subtype B reference genomes should prove valuable for structure-function studies of genetically diverse viral gene products, the generation of subtype-specific immunological reagents, and the production of DNA- and protein-based subunit vaccines directed against a broader spectrum of viruses.


2003 ◽  
Vol 77 (8) ◽  
pp. 4836-4847 ◽  
Author(s):  
Thomas D. Wu ◽  
Celia A. Schiffer ◽  
Matthew J. Gonzales ◽  
Jonathan Taylor ◽  
Rami Kantor ◽  
...  

ABSTRACT Although many human immunodeficiency virus type 1 (HIV-1)-infected persons are treated with multiple protease inhibitors in combination or in succession, mutation patterns of protease isolates from these persons have not been characterized. We collected and analyzed 2,244 subtype B HIV-1 isolates from 1,919 persons with different protease inhibitor experiences: 1,004 isolates from untreated persons, 637 isolates from persons who received one protease inhibitor, and 603 isolates from persons receiving two or more protease inhibitors. The median number of protease mutations per isolate increased from 4 in untreated persons to 12 in persons who had received four or more protease inhibitors. Mutations at 45 of the 99 amino acid positions in the protease—including 22 not previously associated with drug resistance—were significantly associated with protease inhibitor treatment. Mutations at 17 of the remaining 99 positions were polymorphic but not associated with drug treatment. Pairs and clusters of correlated (covarying) mutations were significantly more likely to occur in treated than in untreated persons: 115 versus 23 pairs and 30 versus 2 clusters, respectively. Of the 115 statistically significant pairs of covarying residues in the treated isolates, 59 were within 8 Å of each other—many more than would be expected by chance. In summary, nearly one-half of HIV-1 protease positions are under selective drug pressure, including many residues not previously associated with drug resistance. Structural factors appear to be responsible for the high frequency of covariation among many of the protease residues. The presence of mutational clusters provides insight into the complex mutational patterns required for HIV-1 protease inhibitor resistance.


1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2004 ◽  
Vol 78 (13) ◽  
pp. 7279-7283 ◽  
Author(s):  
Manish Sagar ◽  
Erin Kirkegaard ◽  
E. Michelle Long ◽  
Connie Celum ◽  
Susan Buchbinder ◽  
...  

ABSTRACT African women frequently acquire several genetically distinct human immunodeficiency virus type 1 (HIV-1) variants from a heterosexual partner, whereas the acquisition of multiple variants appears to be rare in men. To determine whether newly infected individuals in other risk groups acquire genetically diverse viruses, we examined the viral envelope sequences in plasma samples from 13 women and 4 men from the United States infected with subtype B viruses and 10 men from Kenya infected with non-subtype B viruses. HIV-1 envelope sequences differed by more than 2% in three U.S. women, one U.S. man, and one Kenyan man near the time of seroconversion. These findings suggest that early HIV-1 genetic diversity is not exclusive to women from Africa or to infection with any particular HIV-1 subtype.


2009 ◽  
Vol 83 (19) ◽  
pp. 10269-10274 ◽  
Author(s):  
Anne Piantadosi ◽  
Dana Panteleeff ◽  
Catherine A. Blish ◽  
Jared M. Baeten ◽  
Walter Jaoko ◽  
...  

ABSTRACT The determinants of a broad neutralizing antibody (NAb) response and its effect on human immunodeficiency virus type 1 (HIV-1) disease progression are not well defined, partly because most prior studies of a broad NAb response were cross-sectional. We examined correlates of NAb response breadth among 70 HIV-infected, antiretroviral-naïve Kenyan women from a longitudinal seroincident cohort. NAb response breadth was measured 5 years after infection against five subtype A viruses and one subtype B virus. Greater NAb response breadth was associated with a higher viral load set point and greater HIV-1 env diversity early in infection. However, greater NAb response breadth was not associated with a delayed time to a CD4+ T-cell count of <200, antiretroviral therapy, or death. Thus, a broad NAb response results from a high level of antigenic stimulation early in infection, which likely accounts for prior observations that greater NAb response breadth is associated with a higher viral load later in infection.


2011 ◽  
Vol 55 (12) ◽  
pp. 5723-5731 ◽  
Author(s):  
Inge Dierynck ◽  
Herwig Van Marck ◽  
Marcia Van Ginderen ◽  
Tim H. M. Jonckers ◽  
Madhavi N. L. Nalam ◽  
...  

ABSTRACTTMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively.In vitroresistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50= 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50= 258). The activity against a comprehensive panel of PI-resistant mutants and the limitedin vitroselection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


2008 ◽  
Vol 82 (23) ◽  
pp. 11651-11668 ◽  
Author(s):  
James M. Binley ◽  
Elizabeth A. Lybarger ◽  
Emma T. Crooks ◽  
Michael S. Seaman ◽  
Elin Gray ◽  
...  

ABSTRACT Identifying the viral epitopes targeted by broad neutralizing antibodies (NAbs) that sometimes develop in human immunodeficiency virus type 1 (HIV-1)-infected subjects should assist in the design of vaccines to elicit similar responses. Here, we investigated the activities of a panel of 24 broadly neutralizing plasmas from subtype B- and C-infected donors using a series of complementary mapping methods, focusing mostly on JR-FL as a prototype subtype B primary isolate. Adsorption with gp120 immobilized on beads revealed that an often large but variable fraction of plasma neutralization was directed to gp120 and that in some cases, neutralization was largely mediated by CD4 binding site (CD4bs) Abs. The results of a native polyacrylamide gel electrophoresis assay using JR-FL trimers further suggested that half of the subtype B and a smaller fraction of subtype C plasmas contained a significant proportion of NAbs directed to the CD4bs. Anti-gp41 neutralizing activity was detected in several plasmas of both subtypes, but in all but one case, constituted only a minor fraction of the overall neutralization activity. Assessment of the activities of the subtype B plasmas against chimeric HIV-2 viruses bearing various fragments of the membrane proximal external region (MPER) of HIV-1 gp41 revealed mixed patterns, implying that MPER neutralization was not dominated by any single specificity akin to known MPER-specific monoclonal Abs. V3 and 2G12-like NAbs appeared to make little or no contribution to JR-FL neutralization titers. Overall, we observed significant titers of anti-CD4bs NAbs in several plasmas, but approximately two-thirds of the neutralizing activity remained undefined, suggesting the existence of NAbs with specificities unlike any characterized to date.


Sign in / Sign up

Export Citation Format

Share Document