scholarly journals Comparison of In Vitro Activities of Voriconazole and Five Established Antifungal Agents against Different Species of Dermatophytes Using a Broth Macrodilution Method

2001 ◽  
Vol 39 (1) ◽  
pp. 385-388 ◽  
Author(s):  
S. Perea ◽  
A. W. Fothergill ◽  
D. A. Sutton ◽  
M. G. Rinaldi
2001 ◽  
Vol 45 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Cornelia Lass-Flörl ◽  
Markus Nagl ◽  
Cornelia Speth ◽  
Hanno Ulmer ◽  
Manfred P. Dierich ◽  
...  

ABSTRACT The minimal fungicidal concentrations (MFCs) of voriconazole and itraconazole for five clinical isolates each of Aspergillus terreus, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger were determined by a broth macrodilution method. Conidial suspensions as inocula were compared to hyphae as inocula since the invasive form of aspergillosis is manifested by the appearance of hyphal structures. In addition, cell viability staining with the dye FUN-1 was performed to assess time-dependent damage of hyphae exposed to various concentrations of the antifungal agents. With conidial inocula the MFC ranges of voriconazole were 0.5 to 4 μg/ml and those of itraconazole were 0.25 to 2 μg/ml, whereas the MFCs (2 to >16 μg/ml) with hyphal inocula were substantially higher (P < 0.01) for both itraconazole and voriconazole. Only minor differences between the tested antifungals were observed since 16 of 20 and 17 of 20 of the isolates of Aspergillus spp. tested appeared to be killed by voriconazole and itraconazole, respectively. The results of FUN-1 viability staining correlated closely to colony counts, but various time- and dose-dependent levels of viability of hyphae were also observed. In conclusion, our study demonstrates the importance of the type of inoculum used to test antifungals and the applicability of FUN-1 staining as a rapid and sensitive method for assaying the viability of hyphae.


1991 ◽  
Vol 53 (1) ◽  
pp. 144-151 ◽  
Author(s):  
Mamoru YOKOO ◽  
Tadashi ARIKA ◽  
Yoshiro SOH

2018 ◽  
Vol 18 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Luana da S.M. Forezi ◽  
Luana Pereira Borba-Santos ◽  
Mariana F.C. Cardoso ◽  
Vitor F. Ferreira ◽  
Sonia Rozental ◽  
...  

Sporotrichosis is a serious public health problem in Brazil that affects human patients and domestic animals, mainly cats. Thus, the search for new antifungal agents is required also due to the emergence and to the lack of effective drugs available in the therapeutic arsenal. The aim of this study was to evaluate the in vitro antifungal profile of two synthetic series of coumarin derivatives against Sporothrix schenckii and Sporothrix brasiliensis. The three-components synthetic routes used for the preparation of coumarin derivatives have proved to be quite efficient and compounds 16 and 17 have been prepared in good yields. The inhibitory activity of nineteen synthetic coumarins derivatives 16a-i and 17a-j were evaluated against Sporothrix spp. yeasts and the most potent compounds were 16b and 17i. However, according to concentrations able to inhibit (minimum inhibitory concentrations) and kill (minimum fungicidal concentrations) the cells, 17i was more effective than 16b against Sporothrix spp. Thus, 17i exhibited good antifungal activity against S. brasiliensis and S. schenckii, suggesting that it is an important scaffold for the development of novel antifungal agents.


2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


RSC Advances ◽  
2020 ◽  
Vol 10 (38) ◽  
pp. 22318-22323
Author(s):  
Maja Karaman ◽  
Milan Vraneš ◽  
Aleksandar Tot ◽  
Snežana Papović ◽  
Dragana Miljaković ◽  
...  

The objective of this study was to examine the in vitro antifungal activities of 18 newly synthesized ionic liquids (ILs) against three Alternaria strains: A. padwickii, A. dauci and A. linicola.


2006 ◽  
Vol 50 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Jingsong Zhu ◽  
Paul W. Luther ◽  
Qixin Leng ◽  
A. James Mixson

ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.


2018 ◽  
Vol 57 (3) ◽  
pp. 324-327 ◽  
Author(s):  
Karine B Schlemmer ◽  
Francielli P K de Jesus ◽  
Erico S Loreto ◽  
Julia B Farias ◽  
Sydney H Alves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document