scholarly journals A Member of a New Picornaviridae Genus Is Shed in Pig Feces

2012 ◽  
Vol 86 (18) ◽  
pp. 10036-10046 ◽  
Author(s):  
Virginie Sauvage ◽  
Meriadeg Ar Gouilh ◽  
Justine Cheval ◽  
Erika Muth ◽  
Kevin Pariente ◽  
...  

During a study of the fecal microbiomes from two healthy piglets using high-throughput sequencing (HTS), we identified a viral genome containing an open reading frame encoding a predicted polyprotein of 2,133 amino acids. This novel viral genome displayed the typical organization of picornaviruses, containing three structural proteins (VP0, VP3, and VP1), followed by seven nonstructural proteins (2A, 2B, 2C, 3A, 3B, 3Cpro, and 3Dpol). Given its particular relationship withParechovirus, we propose to name it “Pasivirus” forParechosister clade virus, with “Swine pasivirus 1” (SPaV1) as the type species. Fecal samples collected at an industrial farm from healthy sows and piglets from the same herd (25 and 75, respectively) with ages ranging from 4 to 28 weeks were analyzed for the presence of SPaV1 by one-step reverse transcription (RT)-PCR targeting a 3D region of 151 bp. SPaV1 was detected in fecal samples from 51/75 healthy piglets (68% of the animals) and in none of the 25 fecal samples from healthy sows, indicating that SPaV1 circulates through enteric infection of healthy piglets. We propose that SPaV1 represents the first member of a novelPicornaviridaegenus related to parechoviruses.

Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses.


2015 ◽  
Vol 65 ◽  
pp. 11-19 ◽  
Author(s):  
Je-Hyoung Kim ◽  
Chom-Kyu Chong ◽  
Mangalam Sinniah ◽  
Jeyaindran Sinnadurai ◽  
Hyun-Ok Song ◽  
...  

2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Paula F. Zamora ◽  
Liya Hu ◽  
Jonathan J. Knowlton ◽  
Roni M. Lahr ◽  
Rodolfo A. Moreno ◽  
...  

ABSTRACTViral nonstructural proteins, which are not packaged into virions, are essential for the replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. The reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, the activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered, usingin vitroand cell-based RNA degradation experiments, that σNS increases the RNA half-life. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases the viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication.IMPORTANCEFollowing infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the familyReoviridaeencode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different viruses in the familyReoviridaediverge in primary sequence, they are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Usingin vitroand cell culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the familyReoviridaeassort and replicate their genomes.


2015 ◽  
Vol 89 (14) ◽  
pp. 7007-7015 ◽  
Author(s):  
Christine Baechlein ◽  
Nicole Fischer ◽  
Adam Grundhoff ◽  
Malik Alawi ◽  
Daniela Indenbirken ◽  
...  

ABSTRACTHepatitis C virus (HCV) continues to represent one of the most significant threats to human health. In recent years, HCV-related sequences have been found in bats, rodents, horses, and dogs, indicating a widespread distribution of hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel virus of the genusHepaciviruswas discovered in a bovine serum sample.De novoassembly yielded a nearly full-length genome coding for a polyprotein of 2,779 amino acids. Phylogenetic analysis confirmed that the virus represents a novel species within the genusHepacivirus. Viral RNA screening determined that 1.6% (n =5) of 320 individual animals and 3.2% (n =5) of 158 investigated cattle herds in Germany were positive for bovine hepacivirus. Repeated reverse transcription-PCR (RT-PCR) analyses of animals from one dairy herd proved that a substantial percentage of cows were infected, with some of them being viremic for over 6 months. Clinical and postmortem examination revealed no signs of disease, including liver damage. Interestingly, quantitative RT-PCR from different organs and tissues, together with the presence of an miR-122 binding site in the viral genome, strongly suggests a liver tropism for bovine hepacivirus, making this novel virus a promising animal model for HCV infections in humans.IMPORTANCELivestock animals act as important sources for emerging pathogens. In particular, their large herd size and the existence of multiple ways of direct and food-borne infection routes emphasize their role as virus reservoirs. Apart from the search for novel viruses, detailed characterization of these pathogens is indispensable in the context of risk analysis. Here, we describe the identification of a novel HCV-like virus in cattle. In addition, determination of the prevalence and of the course of infection in cattle herds provides valuable insights into the biology of this novel virus. The results presented here form a basis for future studies targeting viral pathogenesis of bovine hepaciviruses and their potential to establish zoonotic infections.


2021 ◽  
Vol 10 (8) ◽  
Author(s):  
Kirsty T. T. Kwok ◽  
Myrna M. T. de Rooij ◽  
Felisita F. Sinartio ◽  
Lidwien A. M. Smit ◽  
Marion P. G. Koopmans ◽  
...  

ABSTRACT We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing.


2020 ◽  
Author(s):  
E.V. Korneenko ◽  
◽  
А.E. Samoilov ◽  
I.V. Artyushin ◽  
M.V. Safonova ◽  
...  

In our study we analyzed viral RNA in bat fecal samples from Moscow region (Zvenigorod district) collected in 2015. To detect various virus families and genera in bat fecal samples we used PCR amplification of viral genome fragments, followed by high-throughput sequencing. Blastn search of unassembled reads revealed the presence of viruses from families Astroviridae, Coronaviridae and Herpesviridae. Assembly using SPAdes 3.14 yields contigs of length 460–530 b.p. which correspond to genome fragments of Coronaviridae and Astroviridae. The taxonomy of coronaviruses has been determined to the genus level. We also showed that one bat can be a reservoir of several virus genuses. Thus, the bats in the Moscow region were confirmed as reservoir hosts for potentially zoonotic viruses


2011 ◽  
Vol 78 (1) ◽  
pp. 156-162 ◽  
Author(s):  
Anne M. Johnson ◽  
George D. Di Giovanni ◽  
Paul A. Rochelle

ABSTRACTThis study compared the three most commonly used assays for detectingCryptosporidiumsp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targetingCryptosporidiumsp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targetingCryptosporidiumsp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumeratedCryptosporidium parvumoocysts, including infection with one oocyst and three oocysts. All methods also detected infection withCryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with threeC. parvumoocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectiousCryptosporidium parvumandCryptosporidium hominisin drinking water.


2021 ◽  
Author(s):  
Enrique González-Tortuero ◽  
Revathy Krishnamurthi ◽  
Heather E. Allison ◽  
Ian B. Goodhead ◽  
Chloe E. James

The number of newly available viral genomes and metagenomes has increased exponentially since the development of high throughput sequencing platforms and genome analysis tools. Bioinformatic annotation pipelines are largely based on open reading frame (ORF) calling software, which identifies genes independently of the sequence taxonomical background. Although ORF-calling programs provide a rapid genome annotation, they can misidentify ORFs and start codons; errors that might be perpetuated and propagated over time. This study evaluated the performance of multiple ORF-calling programs for viral genome annotation against the complete RefSeq viral database. Programs outputs varied when considering the viral nucleic acid type versus the viral host. According to the number of ORFs, Prodigal and Metaprodigal were the most accurate programs for DNA viruses, while FragGeneScan and Prodigal generated the most accurate outputs for RNA viruses. Similarly, Prodigal outperformed the benchmark for viruses infecting prokaryotes, and GLIMMER and GeneMarkS produced the most accurate annotations for viruses infecting eukaryotes. When the coordinates of the ORFs were considered, Prodigal scored high for all scenarios except for RNA viruses, where GeneMarkS generated the most reliable results. Overall, the quality of the coordinates predicted for RNA viruses was poorer than for DNA viruses, suggesting the need for improved ORF-calling programs to deal with RNA viruses. Moreover, none of the ORF-calling programs reached 90% accuracy for annotation of DNA viruses. Any automatic annotation can still be improved by manual curation, especially when the presence of ORFs is validated with wet-lab experiments. However, our evaluation of the current ORF-calling programs is expected to be useful for the improvement of viral genome annotation pipelines and highlights the need for more expression data to improve the rigor of reference genomes.


Sign in / Sign up

Export Citation Format

Share Document