scholarly journals Use of G-Protein-Coupled and -Uncoupled CCR5 Receptors by CCR5 Inhibitor-Resistant and -Sensitive Human Immunodeficiency Virus Type 1 Variants

2013 ◽  
Vol 87 (12) ◽  
pp. 6569-6581 ◽  
Author(s):  
R. Berro ◽  
A. Yasmeen ◽  
R. Abrol ◽  
B. Trzaskowski ◽  
S. Abi-Habib ◽  
...  
Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1165-1173
Author(s):  
Xiyun Deng ◽  
Hirotsugu Ueda ◽  
Shao Bo Su ◽  
Wanghua Gong ◽  
Nancy M. Dunlop ◽  
...  

Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1β (MIP-1β) and stromal cell-derived factor 1 (SDF-1), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein–coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1–infected patients followed by immune suppression.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1165-1173 ◽  
Author(s):  
Xiyun Deng ◽  
Hirotsugu Ueda ◽  
Shao Bo Su ◽  
Wanghua Gong ◽  
Nancy M. Dunlop ◽  
...  

Abstract Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1β (MIP-1β) and stromal cell-derived factor 1 (SDF-1), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein–coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1–infected patients followed by immune suppression.


Virology ◽  
2005 ◽  
Vol 338 (1) ◽  
pp. 182-199 ◽  
Author(s):  
Andre J. Marozsan ◽  
Shawn E. Kuhmann ◽  
Thomas Morgan ◽  
Carolina Herrera ◽  
Enid Rivera-Troche ◽  
...  

Virology ◽  
2011 ◽  
Vol 413 (1) ◽  
pp. 47-59 ◽  
Author(s):  
Cleo G. Anastassopoulou ◽  
Thomas J. Ketas ◽  
Rafael S. Depetris ◽  
Antonia M. Thomas ◽  
Per Johan Klasse ◽  
...  

2005 ◽  
Vol 79 (12) ◽  
pp. 7938-7941 ◽  
Author(s):  
Yea-Lih Lin ◽  
Clément Mettling ◽  
Pierre Portalès ◽  
Brigitte Réant ◽  
Jacques Clot ◽  
...  

ABSTRACT The binding of R5 envelope to CCR5 during human immunodeficiency virus type 1 (HIV-1) entry provokes cell activation, which has so far been considered to have no effect on virus replication, since signaling-defective CCR5 molecules have been shown to function normally as HIV-1 coreceptors on transformed cells or mitogen-stimulated T lymphocytes. As the background state of activation of these cells might have biased the results, we performed experiments using the same approach but with nonactivated primary T lymphocytes. We now report that the single R126N mutation in the DRY motif, involved in G-protein coupling, results in a signaling-defective CCR5 coreceptor with a drastically impaired capacity to support HIV-1 infection.


2004 ◽  
Vol 78 (12) ◽  
pp. 6706-6706 ◽  
Author(s):  
S. E. Kuhmann ◽  
P. Pugach ◽  
K. J. Kunstman ◽  
J. Taylor ◽  
R. L. Stanfield ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document