scholarly journals Intranasal Vaccination with 1918 Influenza Virus-Like Particles Protects Mice and Ferrets from Lethal 1918 and H5N1 Influenza Virus Challenge

2009 ◽  
Vol 83 (11) ◽  
pp. 5726-5734 ◽  
Author(s):  
Lucy A. Perrone ◽  
Attiya Ahmad ◽  
Vic Veguilla ◽  
Xiuhua Lu ◽  
Gale Smith ◽  
...  

ABSTRACT Influenza vaccines capable of inducing cross-reactive or heterotypic immunity could be an important first line of prevention against a novel subtype virus. Influenza virus-like particles (VLPs) displaying functional viral proteins are effective vaccines against replication-competent homologous virus, but their ability to induce heterotypic immunity has not been adequately tested. To measure VLP vaccine efficacy against a known influenza pandemic virus, recombinant VLPs were generated from structural proteins of the 1918 H1N1 virus. Mucosal and traditional parenteral administrations of H1N1 VLPs were compared for the ability to protect against the reconstructed 1918 virus and a highly pathogenic avian H5N1 virus isolated from a fatal human case. Mice that received two intranasal immunizations of H1N1 VLPs were largely protected against a lethal challenge with both the 1918 virus and the H5N1 virus. In contrast, mice that received two intramuscular immunizations of 1918 VLPs were only protected against a homologous virus challenge. Mucosal vaccination of mice with 1918 VLPs induced higher levels of cross-reactive immunoglobulin G (IgG) and IgA antibodies than did parenteral vaccination. Similarly, ferrets mucosally vaccinated with 1918 VLPs completely survived a lethal challenge with the H5N1 virus, while only a 50% survival rate was observed in parenterally vaccinated animals. These results suggest a strategy of VLP vaccination against a pandemic virus and one that stimulates heterotypic immunity against an influenza virus strain with threatening pandemic potential.

2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2015 ◽  
Vol 89 (20) ◽  
pp. 10612-10624 ◽  
Author(s):  
Vladimir Beljanski ◽  
Cindy Chiang ◽  
Greg A. Kirchenbaum ◽  
David Olagnier ◽  
Chalise E. Bloom ◽  
...  

ABSTRACTThe molecular interaction between viral RNA and the cytosolic sensor RIG-I represents the initial trigger in the development of an effective immune response against infection with RNA viruses, resulting in innate immune activation and subsequent induction of adaptive responses. In the present study, the adjuvant properties of a sequence-optimized 5′-triphosphate-containing RNA (5′pppRNA) RIG-I agonist (termed M8) were examined in combination with influenza virus-like particles (VLP) (M8-VLP) expressing H5N1 influenza virus hemagglutinin (HA) and neuraminidase (NA) as immunogens. In combination with VLP, M8 increased the antibody response to VLP immunization, provided VLP antigen sparing, and protected mice from a lethal challenge with H5N1 influenza virus. M8-VLP immunization also led to long-term protective responses against influenza virus infection in mice. M8 adjuvantation of VLP increased endpoint and antibody titers and inhibited influenza virus replication in lungs compared with approved or experimental adjuvants alum, AddaVax, and poly(I·C). Uniquely, immunization with M8-VLP stimulated a TH1-biased CD4 T cell response, as determined by increased TH1 cytokine levels in CD4 T cells and increased IgG2 levels in sera. Collectively, these data demonstrate that a sequence-optimized, RIG-I-specific agonist is a potent adjuvant that can be utilized to increase the efficacy of influenza VLP vaccination and dramatically improve humoral and cellular mediated protective responses against influenza virus challenge.IMPORTANCEThe development of novel adjuvants to increase vaccine immunogenicity is an important goal that seeks to improve vaccine efficacy and ultimately prevent infections that endanger human health. This proof-of-principle study investigated the adjuvant properties of a sequence-optimized 5′pppRNA agonist (M8) with enhanced capacity to stimulate antiviral and inflammatory gene networks using influenza virus-like particles (VLP) expressing HA and NA as immunogens. Vaccination with VLP in combination with M8 increased anti-influenza virus antibody titers and protected animals from lethal influenza virus challenge, highlighting the potential clinical use of M8 as an adjuvant in vaccine development. Altogether, the results describe a novel immunostimulatory agonist targeted to the cytosolic RIG-I sensor as an attractive vaccine adjuvant candidate that can be used to increase vaccine efficacy, a pressing issue in children and the elderly population.


2010 ◽  
Vol 17 (9) ◽  
pp. 1381-1389 ◽  
Author(s):  
Jae-Min Song ◽  
Yeu-Chun Kim ◽  
Aleksandr S. Lipatov ◽  
Marc Pearton ◽  
C. Todd Davis ◽  
...  

ABSTRACT A simple method suitable for self-administration of vaccine would improve mass immunization, particularly during a pandemic outbreak. Influenza virus-like particles (VLPs) have been suggested as promising vaccine candidates against potentially pandemic influenza viruses, as they confer long-lasting immunity but are not infectious. We investigated the immunogenicity and protective efficacy of influenza H5 VLPs containing the hemagglutinin (HA) of A/Vietnam/1203/04 (H5N1) virus delivered into the skin of mice using metal microneedle patches and also studied the response of Langerhans cells in a human skin model. Prime-boost microneedle vaccinations with H5 VLPs elicited higher levels of virus-specific IgG1 and IgG2a antibodies, virus-specific antibody-secreting cells, and cytokine-producing cells up to 8 months after vaccination compared to the same antigen delivered intramuscularly. Both prime-boost microneedle and intramuscular vaccinations with H5 VLPs induced similar hemagglutination inhibition titers and conferred 100% protection against lethal challenge with the wild-type A/Vietnam/1203/04 virus 16 weeks after vaccination. Microneedle delivery of influenza VLPs to viable human skin using microneedles induced the movement of CD207+ Langerhans cells toward the basement membrane. Microneedle vaccination in the skin with H5 VLPs represents a promising approach for a self-administered vaccine against viruses with pandemic potential.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Adrianus C. M. Boon ◽  
David Finkelstein ◽  
Ming Zheng ◽  
Guochun Liao ◽  
John Allard ◽  
...  

ABSTRACTThe genotype of the host is one of several factors involved in the pathogenesis of an infectious disease and may be a key parameter in the epidemiology of highly pathogenic H5N1 influenza virus infection in humans. Gene polymorphisms may affect the viral replication rate or alter the host’s immune response to the virus. In humans, it is unclear which aspect dictates the severity of H5N1 virus disease. To identify the mechanism underlying differential responses to H5N1 virus infection in a genetically diverse population, we assessed the host responses and lung viral loads in 21 inbred mouse strains upon intranasal inoculation with A/Hong Kong/213/03 (H5N1). Resistant mouse strains survived large inocula while susceptible strains succumbed to infection with 1,000- to 10,000-fold-lower doses. Quantitative analysis of the viral load after inoculation with an intermediate dose found significant associations with lethality as early as 2 days postinoculation, earlier than any other disease indicator. The increased viral titers in the highly susceptible strains mediated a hyperinflamed environment, indicated by the distinct expression profiles and increased production of inflammatory mediators on day 3. Supporting the hypothesis that viral load rather than an inappropriate response to the virus was the key severity-determining factor, we performed quantitative real-time PCR measuring the cytokine/viral RNA ratio. No significant differences between susceptible and resistant mouse strains were detected, confirming that it is the host genetic component controlling viral load, and therefore replication dynamics, that is primarily responsible for a host’s susceptibility to a given H5N1 virus.IMPORTANCEHighly pathogenic H5N1 influenza virus has circulated in Southeast Asia since 2003 but has been confirmed in relatively few individuals. It has been postulated that host genetic polymorphisms increase the susceptibility to infection and severe disease. The mechanisms and host proteins affected during severe disease are unknown. Inbred mouse strains vary considerably in their ability to resist H5N1 virus and were used to identify the primary mechanism determining disease severity. After inoculation with H5N1, resistant mouse strains had reduced amounts of virus in their lungs, which subsequently resulted in lower production of proinflammatory mediators and less pathology. We therefore conclude that the host genetic component controlling disease severity is primarily influencing viral replication. This is an important concept, as it emphasizes the need to limit virus replication through antiviral therapies and it shows that the hyperinflammatory environment is simply a reflection of more viral genetic material inducing a response.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30252 ◽  
Author(s):  
Penghui Yang ◽  
Yueqiang Duan ◽  
Peirui Zhang ◽  
Zhiwei Li ◽  
Cheng Wang ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 133 ◽  
Author(s):  
Maria S. Salvato ◽  
Arban Domi ◽  
Camila Guzmán-Cardozo ◽  
Sandra Medina-Moreno ◽  
Juan Carlos Zapata ◽  
...  

Lassa fever surpasses Ebola, Marburg, and all other hemorrhagic fevers except Dengue in its public health impact. Caused by Lassa virus (LASV), the disease is a scourge on populations in endemic areas of West Africa, where reported incidence is higher. Here, we report construction, characterization, and preclinical efficacy of a novel recombinant vaccine candidate GEO-LM01. Constructed in the Modified Vaccinia Ankara (MVA) vector, GEO-LM01 expresses the glycoprotein precursor (GPC) and zinc-binding matrix protein (Z) from the prototype Josiah strain lineage IV. When expressed together, GP and Z form Virus-Like Particles (VLPs) in cell culture. Immunogenicity and efficacy of GEO-LM01 was tested in a mouse challenge model. A single intramuscular dose of GEO-LM01 protected 100% of CBA/J mice challenged with a lethal dose of ML29, a Mopeia/Lassa reassortant virus, delivered directly into the brain. In contrast, all control animals died within one week. The vaccine induced low levels of antibodies but Lassa-specific CD4+ and CD8+ T cell responses. This is the first report showing that a single dose of a replication-deficient MVA vector can confer full protection against a lethal challenge with ML29 virus.


2010 ◽  
Vol 84 (20) ◽  
pp. 10918-10922 ◽  
Author(s):  
Cássio Pontes Octaviani ◽  
Makoto Ozawa ◽  
Shinya Yamada ◽  
Hideo Goto ◽  
Yoshihiro Kawaoka

Reassortment is an important mechanism for the evolution of influenza viruses. Here, we coinfected cultured cells with the pandemic swine-origin influenza virus (S-OIV) and a contemporary H5N1 virus and found that these two viruses have high genetic compatibility. Studies of human lung cell lines indicated that some reassortants had better growth kinetics than their parental viruses. We conclude that reassortment between these two viruses can occur and could create pandemic H5N1 viruses.


2008 ◽  
Vol 82 (22) ◽  
pp. 11374-11382 ◽  
Author(s):  
Jeong-Ki Kim ◽  
Patrick Seiler ◽  
Heather L. Forrest ◽  
Alexey M. Khalenkov ◽  
John Franks ◽  
...  

ABSTRACT Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 μg of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.


2002 ◽  
Vol 76 (2) ◽  
pp. 507-516 ◽  
Author(s):  
P. S. Chin ◽  
E. Hoffmann ◽  
R. Webby ◽  
R. G. Webster ◽  
Y. Guan ◽  
...  

ABSTRACT The A/teal/Hong Kong/W312/97 (H6N1) influenza virus and the human H5N1 and H9N2 influenza viruses possess similar genes encoding internal proteins, suggesting that H6N1 viruses could become novel human pathogens. The molecular epidemiology and evolution of H6 influenza viruses were characterized by antigenic and genetic analyses of 29 H6 influenza viruses isolated from 1975 to 1981 and 1997 to 2000. Two distinct groups were identified on the basis of their antigenic characteristics. Phylogenetic analysis revealed that all H6N1 viruses isolated from terrestrial poultry in 1999 and 2000 are closely related to A/teal/Hong Kong/W312/97 (H6N1), and the nucleotide sequences of these viruses and of A/Hong Kong/156/97 (H5N1) were more than 96% homologous. The hemagglutinin (HA) of the 1999 and 2000 terrestrial viruses does not have multiple basic amino acids at the site of cleavage of HA1 to HA2; however, a unique insertion of aspartic acid in HA1 between positions 144 and 145 (H3 numbering) was found. The neuraminidase of these terrestrial H6N1 viruses has a deletion of 19 amino acids characteristic of A/Hong Kong/156/97 (H5N1). Evolutionary analysis suggested that these H6N1 viruses coevolved with A/quail/Hong Kong/G1/97-like H9N2 viruses and became more adapted to terrestrial poultry. These terrestrial 1999 and 2000 A/teal/Hong Kong/W312/97 (H6N1)-like viruses, along with the H9N2 viruses, could have been involved in the genesis of the pathogenic H5N1 influenza viruses of 1997. The presence of H6N1 viruses in poultry markets in Hong Kong that possess seven of the eight genes of the A/Hong Kong/156/97 (H5N1) virus raises the following fundamental questions relevant to influenza pandemic preparedness: could the pathogenic H5N1 virus reemerge and could the H6N1 viruses directly cross the species barrier to mammals?


2007 ◽  
Vol 81 (23) ◽  
pp. 12911-12917 ◽  
Author(s):  
Nikolai V. Kaverin ◽  
Irina A. Rudneva ◽  
Elena A. Govorkova ◽  
Tatyana A. Timofeeva ◽  
Aleksandr A. Shilov ◽  
...  

ABSTRACT We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.


Sign in / Sign up

Export Citation Format

Share Document