scholarly journals Dihydroxythiophenes Are Novel Potent Inhibitors of Human Immunodeficiency Virus Integrase with a Diketo Acid-Like Pharmacophore

2006 ◽  
Vol 80 (14) ◽  
pp. 6883-6894 ◽  
Author(s):  
S. Kehlenbeck ◽  
U. Betz ◽  
A. Birkmann ◽  
B. Fast ◽  
A. H. Göller ◽  
...  

ABSTRACT We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that do not interfere with virus entry, as shown by the inhibition of a vesicular stomatitis virus G-pseudotyped retroviral system. Moreover, in quantitative real-time PCR experiments, no effect on the synthesis of viral cDNA could be detected but rather an increase in the accumulation of 2-long-terminal-repeat cycles was detected. This suggests that the integration of viral cDNA is blocked. Molecular modeling and the structure activity relationship of DHT demonstrate that our compound fits into a two-metal-binding motif that has been suggested as the essential pharmacophore for diketo acid (DKA)-like strand transfer inhibitors (Grobler et al., Proc. Natl. Acad. Sci. USA 99:6661-6666, 2002.). This notion is supported by the profiling of DHT on retroviral vectors carrying published resistance mutations for DKA-like inhibitors where DHT showed partial cross-resistance. This suggests that DHT bind to a common site in the catalytic center of integrase, albeit with an altered binding mode. Taken together, our findings indicate that DHT are novel selective strand transfer inhibitors of integrase with a pharmacophore homologous to DKA-like inhibitors.

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


1998 ◽  
Vol 72 (8) ◽  
pp. 6716-6724 ◽  
Author(s):  
Jianhui Guo ◽  
Tiyun Wu ◽  
Julian Bess ◽  
Louis E. Henderson ◽  
Judith G. Levin

ABSTRACT In this report we demonstrate that human immunodeficiency virus type 1 (HIV-1) minus-strand transfer, assayed in vitro and in endogenous reactions, is greatly inhibited by actinomycin D. Previously we showed that HIV-1 nucleocapsid (NC) protein (a nucleic acid chaperone catalyzing nucleic acid rearrangements which lead to more thermodynamically stable conformations) dramatically stimulates HIV-1 minus-strand transfer by preventing TAR-dependent self-priming from minus-strand strong-stop DNA [(−) SSDNA]. Despite this potent activity, the addition of NC to in vitro reactions with actinomycin D results in only a modest increase in the 50% inhibitory concentration (IC50) for the drug. PCR analysis of HIV-1 endogenous reactions indicates that minus-strand transfer is inhibited by the drug with an IC50 similar to that observed when NC is present in the in vitro system. Taken together, these results demonstrate that NC cannot overcome the inhibitory effect of actinomycin D on minus-strand transfer. Other experiments reveal that at actinomycin D concentrations which severely curtail minus-strand transfer, neither the synthesis of (−) SSDNA nor RNase H degradation of donor RNA is affected; however, the annealing of (−) SSDNA to acceptor RNA is significantly reduced. Thus, inhibition of the annealing reaction is responsible for actinomycin D-mediated inhibition of strand transfer. Since NC (but not reverse transcriptase) is required for efficient annealing, we conclude that actinomycin D inhibits minus-strand transfer by blocking the nucleic acid chaperone activity of NC. Our findings also suggest that actinomycin D, already approved for treatment of certain tumors, might be useful in combination therapy for AIDS.


2004 ◽  
Vol 78 (11) ◽  
pp. 5835-5847 ◽  
Author(s):  
Deborah J. Lee ◽  
W. E. Robinson

ABSTRACT The diketo acids are potent inhibitors of human immunodeficiency virus (HIV) integrase (IN). Mutations in IN, T66I, S153Y, and M154I, as well as T66I-S153Y and T66I-M154I double mutations, confer resistance to diketo acids (D. J. Hazuda et al., Science 287:646-650, 2000). The effects of these IN mutations on viral replication, enzymatic activity, and susceptibility to other HIV inhibitors are reported herein. By immunofluorescence assay and real-time PCR, all mutant viruses demonstrated a modest delay in viral spread compared to that of reference HIV. These viruses also showed a statistically significant defect in integration without defects in reverse transcription. Recombinant IN containing S153Y, T66I, and M154I-T66I mutations had an approximately twofold decrease in both disintegration and 3′-end-processing-strand transfer activities in vitro. In contrast, IN containing M154I demonstrated a greater than twofold increase in specific activity in both reactions. All mutant HIVs were resistant to l-chicoric acid, a dicaffeoyltartaric acid IN inhibitor, both in tissue culture and in biochemical assays, yet remained susceptible to the reverse transcriptase inhibitors zidovudine and nevirapine. Thus, IN mutations conferring resistance to the diketo acids can yield integration defects, attenuated catalysis in vitro, and cross-resistance to l-chicoric acid.


2007 ◽  
Vol 81 (15) ◽  
pp. 7852-7859 ◽  
Author(s):  
Jessica H. Brehm ◽  
Dianna Koontz ◽  
Jeffrey D. Meteer ◽  
Vinay Pathak ◽  
Nicolas Sluis-Cremer ◽  
...  

ABSTRACT Recent work indicates that mutations in the C-terminal domains of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) increase 3′-azido-3′-dideoxythymidine (AZT) resistance. Because it is not known whether AZT selects for mutations outside of the polymerase domain of RT, we carried out in vitro experiments in which HIV-1LAI or AZT-resistant HIV-1LAI (M41L/L210W/T215Y) was passaged in MT-2 cells in increasing concentrations of AZT. The first resistance mutations to appear in HIV-1LAI were two polymerase domain thymidine analog mutations (TAMs), D67N and K70R, and two novel mutations, A371V in the connection domain and Q509L in the RNase H domain, that together conferred up to 90-fold AZT resistance. Thereafter, the T215I mutation appeared but was later replaced by T215F, resulting in a large increase in AZT resistance (∼16,000-fold). Mutations in the connection and RNase H domains were not selected starting with AZT-resistant virus (M41L/L210W/T215Y). The roles of A371V and Q509L in AZT resistance were confirmed by site-directed mutagenesis: A371V and Q509L together increased AZT resistance ∼10- to 50-fold in combination with TAMs (M41L/L210W/T215Y or D67N/K70R/T215F) but had a minimal effect without TAMs (1.7-fold). A371V and Q509L also increased cross-resistance with TAMs to lamivudine and abacavir, but not stavudine or didanosine. These results provide the first evidence that mutations in the connection and RNase H domains of RT can be selected in vitro by AZT and confer greater AZT resistance and cross-resistance to nucleoside RT inhibitors in combination with TAMs in the polymerase domain.


1999 ◽  
Vol 73 (10) ◽  
pp. 8831-8836 ◽  
Author(s):  
Hongmei Liu ◽  
Xiaoyun Wu ◽  
Hongling Xiao ◽  
John C. Kappes

ABSTRACT Integrase (IN) is the only retroviral enzyme necessary for the integration of retroviral cDNA into the host cell’s chromosomes. The structure and function of IN is highly conserved. The human immunodeficiency virus type 2 (HIV-2) IN has been shown to efficiently support 3′ processing and strand transfer of HIV-1 DNA substrate in vitro. To determine whether HIV-2 IN protein (IN2) could substitute for HIV-1 IN function in vivo, we used HIV-1 Vpr to deliver the IN2 into IN mutant HIV-1 virions by expression intrans as a Vpr-IN fusion protein.Trans-complementation with IN2 markedly increased the infectivity of IN-minus HIV-1. Compared with the homologous trans-IN protein, infectivity was increased to a level of 16%. Since IN has been found to play a role in reverse transcription (Wu et al., J. Virol. 73:2126–2135, 1999), cells infected with IN2-complemented HIV-1 were analyzed for DNA products of reverse transcription. DNA levels of approximately 18% of that of wild type were detected. The homologous trans-IN protein restored the synthesis of viral cDNA to approximately 86% of that of wild-type virus. By complementing integration-defective HIV-1 IN mutant viruses, which were not impaired in cDNA synthesis, thetrans-IN2 protein was shown to support integration up to a level of 55% compared with that of the homologoustrans-IN protein. The delivery of heterologous IN protein into HIV-1 particles in trans offers a novel approach to understand IN protein function in vivo.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


2007 ◽  
Vol 82 (2) ◽  
pp. 764-774 ◽  
Author(s):  
Kazuya Shimura ◽  
Eiichi Kodama ◽  
Yasuko Sakagami ◽  
Yuji Matsuzaki ◽  
Wataru Watanabe ◽  
...  

ABSTRACT Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.


1995 ◽  
Vol 6 (2) ◽  
pp. 73-79 ◽  
Author(s):  
M. Seki ◽  
Y. Sadakata ◽  
S. Yuasa ◽  
M. Baba

MKC-442, 6-benzy 1-1-ethoxymethyl-5-isopropyIuraciI (l-EBU), is a potent and selective non-nucleoside inhibitor of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase (RT). Nevirapine, another non-nucleoside RT inhibitor (NNRTI), is associated with rapid emergence of drug-resistant variants during in vitro passages of HIV-1. The emergence of resistant viruses to MKC-442 or nevirapine was examined in vitro. MT-4 cells infected with a clinical isolate (HE) of HIV-1 were cultivated in medium containing excess concentrations of these drugs, and the drug susceptibilities of the breakthrough viruses recovered from the medium were measured. Although nevirapine lost its antiviral activity after six passages, a delay in the emergence of fully resistant viruses was observed for MKC-442. Two resistant clones for each drug were isolated and nucleotide sequences within the RT region were analysed. An amino acid substitution at position 181 (Tyr to Cys) was found, with additional substitutions at positions 103 (Lys to Arg) and 108 (Val to lle) in the MKC-442-resistant viruses. These clones showed various susceptibilities to MKC-442, and cross-resistance to other NNRTIs but not to AZT. These results suggest that the major binding site of MKC-442 on the HIV-1 RT is the tyrosine residue common to these NNRTIs, and that drug resistance to NNRTIs is dependent on both the quality and the quantity of mutations within the HIV-1 RT gene.


2002 ◽  
Vol 46 (12) ◽  
pp. 3954-3962 ◽  
Author(s):  
Valery Fikkert ◽  
Peter Cherepanov ◽  
Kristel Van Laethem ◽  
Anke Hantson ◽  
Barbara Van Remoortel ◽  
...  

ABSTRACT We describe the development of chimeric virus technology (CVT) for human immunodeficiency virus (HIV) type 1 (HIV-1) env genes gp120, gp41, and gp160 for evaluation of the susceptibilities of HIV to entry inhibitors. This env CVT allows the recombination of env sequences derived from different strains into a proviral wild-type HIV-1 clone (clone NL4.3) from which the corresponding env gene has been deleted. An HIV-1 strain (strain NL4.3) resistant to the fusion inhibitor T20 (strain NL4.3/T20) was selected in vitro in the presence of T20. AMD3100-resistant strain NL3.4 (strain NL4.3/AMD3100) was previously selected by De Vreese et al. (K. De Vreese et al., J. Virol. 70:689-696, 1996). NL4.3/AMD3100 contains several mutations in its gp120 gene (De Vreese et al., J. Virol. 70:689-696, 1996), whereas NL4.3/T20 has mutations in both gp120 and gp41. Phenotypic analysis revealed that NL4.3/AMD3100 lost its susceptibility to dextran sulfate, AMD3100, AMD2763, T134, and T140 but not its susceptibility to T20, whereas NL4.3/T20 lost its susceptibility only to the inhibitory effect of T20. The recombination of gp120 of NL4.3/AMD3100 and gp41 of NL4.3/T20 or recombination of the gp160 genes of both strains into a wild-type background reproduced the phenotypic (cross-)resistance profiles of the corresponding strains selected in vitro. These data imply that mutations in gp120 alone are sufficient to reproduce the resistance profile of NL4.3/AMD3100. The same can be said for gp41 in relation to NL4.3/T20. In conclusion, we demonstrate the use of env CVT as a research tool in the delineation of the region important for the phenotypic (cross-)resistance of HIV strains to entry inhibitors. In addition, we obtained a proof of principle that env CVT can become a helpful diagnostic tool in assessments of the phenotypic resistance of clinical HIV isolates to HIV entry inhibitors.


Sign in / Sign up

Export Citation Format

Share Document