scholarly journals Large Tailed Spindle Viruses of Archaea: a New Way of Doing Viral Business

2015 ◽  
Vol 89 (18) ◽  
pp. 9146-9149 ◽  
Author(s):  
Rebecca Hochstein ◽  
Daniel Bollschweiler ◽  
Harald Engelhardt ◽  
C. Martin Lawrence ◽  
Mark Young

Viruses ofArchaeacontinue to surprise us. Archaeal viruses have revealed new morphologies, protein folds, and gene content. This is especially true for large spindle viruses, which infect onlyArchaea. We present a comparison of particle morphologies, major coat protein structures, and gene content among the five characterized large spindle viruses to elucidate defining characteristics. Structural similarities and a core set of genes support the grouping of the large spindle viruses into a new superfamily.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
Godwin W. Nchinda ◽  
Nadia Al-Atoom ◽  
Mamie T. Coats ◽  
Jacqueline M. Cameron ◽  
Alain Bopda Waffo

Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts.


Biochemistry ◽  
1996 ◽  
Vol 35 (48) ◽  
pp. 15467-15473 ◽  
Author(s):  
David Stopar ◽  
Ruud B. Spruijt ◽  
Cor J. A. M. Wolfs ◽  
Marcus A. Hemminga

2015 ◽  
Vol 89 (8) ◽  
pp. 4237-4248 ◽  
Author(s):  
Jane Besong-Ndika ◽  
Konstantin I. Ivanov ◽  
Anders Hafrèn ◽  
Thierry Michon ◽  
Kristiina Mäkinen

ABSTRACTPotato virus A(PVA) is a single-stranded positive-sense RNA virus and a member of the familyPotyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidationin vivoremains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating intransand CP translated from viral RNA incisare required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection.IMPORTANCEThe main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.


1984 ◽  
Vol 81 (3) ◽  
pp. 699-703 ◽  
Author(s):  
D. G. Putterman ◽  
A. Casadevall ◽  
P. D. Boyle ◽  
H. L. Yang ◽  
B. Frangione ◽  
...  

Biochemistry ◽  
2007 ◽  
Vol 46 (29) ◽  
pp. 8579-8591 ◽  
Author(s):  
Weijun Li ◽  
Itai Suez ◽  
Francis C. Szoka

mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Jie Deng ◽  
Jennifer M. Auchtung ◽  
Konstantinos T. Konstantinidis ◽  
Ingrid Brettar ◽  
Manfred G. Höfle ◽  
...  

ABSTRACT Shewanella baltica was the dominant culturable nitrate-reducing bacterium in the eutrophic and strongly stratified Baltic Sea in the 1980s, where it primarily inhabited the oxic-anoxic transition zone. The genomic structures of 46 of these isolates were investigated through comparative genomic hybridization (CGH), which revealed a gradient of genomic similarity, ranging from 65% to as high as 99%. The core genome of the S. baltica species was enriched in anaerobic respiration-associated genes. Auxiliary genes, most of which locate within a few genomic islands (GIs), were nonuniformly distributed among the isolates. Specifically, hypothetical and mobile genetic element (MGE)-associated genes dominated intraclade gene content differences, whereas gain/loss of functional genes drove gene content differences among less related strains. Among the major S. baltica clades, gene signatures related to specific redox-driven and spatial niches within the water column were identified. For instance, genes involved in anaerobic respiration of sulfur compounds may provide key adaptive advantages for clade A strains in anoxic waters where sulfur-containing electron acceptors are present. Genes involved in cell motility, in particular, a secondary flagellar biosynthesis system, may be associated with the free-living lifestyle by clade E strains. Collectively, this study revealed characteristics of genome variations present in the water column and active speciation of S. baltica strains, driven by niche partitioning and horizontal gene transfer (HGT). IMPORTANCE Speciation in nature is a fundamental process driving the formation of the vast microbial diversity on Earth. In the central Baltic Sea, the long-term stratification of water led to formation of a large-scale vertical redoxcline that provided a gradient of environmental niches with respect to the availability of electron acceptors and donors. The region was home to Shewanella baltica populations, which composed the dominant culturable nitrate-reducing bacteria, particularly in the oxic-anoxic transition zone. Using the collection of S. baltica isolates as a model system, genomic variations showed contrasting gene-sharing patterns within versus among S. baltica clades and revealed genomic signatures of S. baltica clades related to redox niche specialization as well as particle association. This study provides important insights into genomic mechanisms underlying bacterial speciation within this unique natural redoxcline.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
David J. F. Walker ◽  
Eric Martz ◽  
Dawn E. Holmes ◽  
Zimu Zhou ◽  
Stephen S. Nonnenmann ◽  
...  

ABSTRACTMicrobially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum ofMethanospirillum hungateiis electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved inArchaea. Furthermore, the structure of theM. hungateiarchaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016,https://doi.org/10.1038/nmicrobiol.2016.222). Thus, the archaellum ofM. hungateiis the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of theM. hungateiarchaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of “green” electronic materials that can be microbially produced with renewable feedstocks.IMPORTANCEMicrobially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the knownM. hungateiarchaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum ofM. hungateiis electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.


2019 ◽  
Vol 202 (4) ◽  
Author(s):  
Irene L. G. Newton ◽  
Danny W. Rice

ABSTRACT The most common intracellular symbiont on the planet—Wolbachia pipientis—is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.


Sign in / Sign up

Export Citation Format

Share Document