scholarly journals Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on Signaling Lymphocyte Activation Molecule-Dependent Entry

2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Bevan Sawatsky ◽  
Roberto Cattaneo ◽  
Veronika von Messling

ABSTRACTUpon infection, morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) initially target immune cells via the signaling lymphocyte activation molecule (SLAM) before spreading to respiratory epithelia through the adherens junction protein nectin-4. However, the roles of these receptors in transmission from infected to naive hosts have not yet been formally tested. To experimentally addressing this question, we established a model of CDV contact transmission between ferrets. We show here that transmission of wild-type CDV sometimes precedes the onset of clinical disease. In contrast, transmission was not observed in most animals infected with SLAM- or nectin-4-blind CDVs, even though all animals infected with the nectin-4-blind virus developed sustained viremia. There was an unexpected case of transmission of a nectin-4-blind virus, possibly due to biting. Another unprecedented event was transient viremia in an infection with a SLAM-blind virus. We identified three compensatory mutations within or near the SLAM-binding surface of the attachment protein. A recombinant CDV expressing the mutated attachment protein regained the ability to infect ferret lymphocytesin vitro, but its replication was not as efficient as that of wild-type CDV. Ferrets infected with this virus developed transient viremia and fever, but there was no transmission to naive contacts. Our study supports the importance of epithelial cell infection and of sequential CDV H protein interactions first with SLAM and then nectin-4 receptors for transmission to naive hosts. It also highlights thein vivoselection pressure on the H protein interactions with SLAM.IMPORTANCEMorbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) are highly contagious. Despite extensive knowledge of how morbilliviruses interact with their receptors, little is known about how those interactions influence viral transmission to naive hosts. In a ferret model of CDV contact transmission, we showed that sequential use of the signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors is essential for transmission. In one animal infected with a SLAM-blind CDV, we documented mild viremia due to the acquisition of three compensatory mutations within or near the SLAM-binding surface. The interaction, however, was not sufficient to cause disease or sustain transmission to naive contacts. This work confirms the sequential roles of SLAM and nectin-4 in morbillivirus transmission and highlights the selective pressure directed toward productive interactions with SLAM.

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 761 ◽  
Author(s):  
Hideo Fukuhara ◽  
Yuri Ito ◽  
Miyuki Sako ◽  
Mizuho Kajikawa ◽  
Koki Yoshida ◽  
...  

Measles virus (MV) and canine distemper virus (CDV) are highly contagious and deadly, forming part of the morbillivirus genus. The receptor recognition by morbillivirus hemagglutinin (H) is important for determining tissue tropism and host range. Recent reports largely urge caution as regards to the potential expansion of host specificities of morbilliviruses. Nonetheless, the receptor-binding potential in different species of morbillivirus H proteins is largely unknown. Herein, we show that the CDV-H protein binds to the dog signaling lymphocyte activation molecule (SLAM), but not to the human, tamarin, or mouse SLAM. In contrast, MV-H can bind to human, tamarin and dog SLAM, but not to that of mice. Notably, MV binding to dog SLAM showed a lower affinity and faster kinetics than that of human SLAM, and MV exhibits a similar entry activity in dog SLAM- and human SLAM-expressing Vero cells. The mutagenesis study using a fusion assay, based on the MV-H–SLAM complex structure, revealed differences in tolerance for the receptor specificity between MV-H and CDV-H. These results provide insights into H-SLAM specificity related to potential host expansion.


2015 ◽  
Vol 90 (3) ◽  
pp. 1622-1637 ◽  
Author(s):  
Mojtaba Khosravi ◽  
Fanny Bringolf ◽  
Silvan Röthlisberger ◽  
Maria Bieringer ◽  
Jürgen Schneider-Schaulies ◽  
...  

ABSTRACTMeasles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces (“front” and “back”). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions.IMPORTANCEA complete understanding of the measles virus and canine distemper virus (CDV) cell entry molecular framework is still lacking, thus impeding the rational design of antivirals. Both viruses share many biological features that partially rely on the use of analogous Ig-like host cell receptors, namely, SLAM and nectin 4, for entering immune and epithelial cells, respectively. Here, we provide evidence that the mode of binding between the membrane-distal V domain of SLAM and the attachment protein (H) of morbilliviruses is very likely conserved. Moreover, although structural information revealed two discrete conformational states of H, one of the structures displayed two H-SLAM binding interfaces (“front” and “back”). Our data not only spotlight the front H-binding site of SLAM as the main determinant of membrane fusion promotion but suggest that the triggering efficiency of the viral entry machinery may rely on a local conformational change within the front H-SLAM interactive site rather than the binding affinity.


2001 ◽  
Vol 75 (14) ◽  
pp. 6418-6427 ◽  
Author(s):  
Veronika von Messling ◽  
Gert Zimmer ◽  
Georg Herrler ◽  
Ludwig Haas ◽  
Roberto Cattaneo

ABSTRACT Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV5804), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDVOS and CDVOL, respectively), and the MV vaccine strain Edmonston B (MVEdm). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDVOS. The coding regions of the H proteins of all CDV strains and MVEdm were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H5804, rCDV-HOL, rCDV-HEdm, rMV-H5804, rMV-HOL, and rMV-HOS were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the familyParamyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.


2001 ◽  
Vol 75 (13) ◽  
pp. 5842-5850 ◽  
Author(s):  
Hironobu Tatsuo ◽  
Nobuyuki Ono ◽  
Yusuke Yanagi

ABSTRACT Morbilliviruses comprise measles virus, canine distemper virus, rinderpest virus, and several other viruses that cause devastating human and animal diseases accompanied by severe immunosuppression and lymphopenia. Recently, we have shown that human signaling lymphocyte activation molecule (SLAM) is a cellular receptor for measles virus. In this study, we examined whether canine distemper and rinderpest viruses also use canine and bovine SLAMs, respectively, as cellular receptors. The Onderstepoort vaccine strain and two B95a (marmoset B cell line)-isolated strains of canine distemper virus caused extensive cytopathic effects in normally resistant CHO (Chinese hamster ovary) cells after expression of canine SLAM. The Ako vaccine strain of rinderpest virus produced strong cytopathic effects in bovine SLAM-expressing CHO cells. The data on entry with vesicular stomatitis virus pseudotypes bearing measles, canine distemper, or rinderpest virus envelope proteins were consistent with development of cytopathic effects in SLAM-expressing CHO cell clones after infection with the respective viruses, confirming that SLAM acts at the virus entry step (as a cellular receptor). Furthermore, most measles, canine distemper, and rinderpest virus strains examined could any use of the human, canine, and bovine SLAMs to infect cells. Our findings suggest that the use of SLAM as a cellular receptor may be a property common to most, if not all, morbilliviruses and explain the lymphotropism and immunosuppressive nature of morbilliviruses.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1262
Author(s):  
Yuta Yamamoto ◽  
Shogo Nakano ◽  
Fumio Seki ◽  
Yasuteru Shigeta ◽  
Sohei Ito ◽  
...  

Infection of hosts by morbilliviruses is facilitated by the interaction between viral hemagglutinin (H-protein) and the signaling lymphocytic activation molecule (SLAM). Recently, the functional importance of the n-terminal region of human SLAM as a measles virus receptor was demonstrated. However, the functional roles of this region in the infection process by other morbilliviruses and host range determination remain unknown, partly because this region is highly flexible, which has hampered accurate structure determination of this region by X-ray crystallography. In this study, we analyzed the interaction between the H-protein from canine distemper virus (CDV-H) and SLAMs by a computational chemistry approach. Molecular dynamics simulations and fragment molecular orbital analysis demonstrated that the unique His28 in the N-terminal region of SLAM from Macaca is a key determinant that enables the formation of a stable interaction with CDV-H, providing a basis for CDV infection in Macaca. The computational chemistry approach presented should enable the determination of molecular interactions involving regions of proteins that are difficult to predict from crystal structures because of their high flexibility.


Author(s):  
Yuta Yamamoto ◽  
Shogo Nakano ◽  
Fumio Seki ◽  
Yasuteru Shigeta ◽  
Sohei Ito ◽  
...  

Infection of hosts by morbilliviruses is facilitated by the interaction between viral hemagglutinin (H-protein) and the signaling lymphocytic activation molecule (SLAM). Recently, the functional importance of the N-terminal region of human SLAM as a measles virus receptor was demonstrated. However, the functional roles of this region in the infection process by other morbilliviruses and host range determination remain unknown partly because this region is highly flexible, which has hampered accurate structure determination of this region by X-ray crystallography. In this study, we analyzed the interaction between the H-protein from canine distemper virus (CDV-H) and SLAMs by a computational chemistry approach. Molecular dynamics simulations and fragment molecular orbital analysis demonstrated that the unique His28 in the N-terminal region of SLAM from Macaca is a key determinant that enables formation of a stable interaction with CDV-H, providing a basis for CDV infection in Macaca. The computational chemistry approach presented should enable determination of molecular interactions involving regions of proteins that are difficult to predict from crystal structures because of their high flexibility.


2006 ◽  
Vol 87 (6) ◽  
pp. 1635-1642 ◽  
Author(s):  
K. Singethan ◽  
E. Topfstedt ◽  
S. Schubert ◽  
W. P. Duprex ◽  
B. K. Rima ◽  
...  

Antibodies to CD9, a member of the tetraspan transmembrane-protein family, selectively inhibit Canine distemper virus (CDV)-induced cell–cell fusion. Neither CDV-induced virus–cell fusion nor cell–cell fusion induced by the closely related morbillivirus Measles virus (MV) is affected by anti-CD9 antibodies. As CDV does not bind CD9, an unknown, indirect mechanism is responsible for the observed inhibition of cell–cell fusion. It was investigated whether this effect was restricted to only one viral glycoprotein, either the haemagglutinin (H) or the fusion (F) protein, which form a fusion complex on the surface of virions and infected cells, or whether it is dependent on both in transient co-transfection assays. The susceptibility to CD9 antibodies segregates with the H protein of CDV. By exchanging portions of the H proteins of CDV and MV, it was determined that the complete extracellular domain, including the predicted stem structure (stem 1, barrel strand 1 and stem 2) and globular head domain, of the CDV-H protein mediates the effect. This suggests that interaction of the CDV-H protein with an unknown cellular receptor(s) is regulated by CD9, rather than F protein-mediated membrane fusion.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Neeta Shrestha ◽  
Flavio M. Gall ◽  
Jonathan Vesin ◽  
Marc Chambon ◽  
Gerardo Turcatti ◽  
...  

Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity.


1997 ◽  
Vol 78 (2) ◽  
pp. 367-372 ◽  
Author(s):  
G Bolt ◽  
P Arctander ◽  
T D Jensen ◽  
M J Appel ◽  
E Gottschalck ◽  
...  

1999 ◽  
Vol 73 (3) ◽  
pp. 2263-2269 ◽  
Author(s):  
Pascal Cherpillod ◽  
Karin Beck ◽  
Andreas Zurbriggen ◽  
Riccardo Wittek

ABSTRACT The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.


Sign in / Sign up

Export Citation Format

Share Document