scholarly journals Interleukin-1R Signaling Is Essential for Induction of Proapoptotic CD8 T Cells, Viral Clearance, and Pathology during Lymphocytic Choriomeningitis Virus Infection in Mice

2012 ◽  
Vol 86 (16) ◽  
pp. 8713-8719 ◽  
Author(s):  
Lars T. Joeckel ◽  
Reinhard Wallich ◽  
Sunil S. Metkar ◽  
Christopher J. Froelich ◽  
Markus M. Simon ◽  
...  

The T cell granule exocytosis pathway is essential to control hepatotropic lymphocytic choriomeningitis virus strain WE (LCMV-WE) but also contributes to the observed pathology in mice. Although effective antiviral T cell immunity and development of viral hepatitis are strictly dependent on perforin and granzymes, the molecular basis underlying induction of functionally competent virus-immune T cells, including participation of the innate immune system, is far from being resolved. We demonstrate here that LCMV-immune T cells of interleukin-1 receptor (IL-1R)-deficient mice readily express transcripts for perforin and granzymes but only translate perforin, resulting in the lack of proapoptotic potentialin vitro. LCMV is not cleared in IL-1R-deficient mice, and yet the infected mice develop neither splenomegaly nor hepatitis. These results demonstrate that IL-1R signaling is central to the induction of proapoptotic CD8 T cell immunity, including viral clearance and associated tissue injuries in LCMV infection.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3891-3891
Author(s):  
Zwi N. Berneman ◽  
Nathalie Cools ◽  
Viggo F.I. Van Tendeloo ◽  
Marc Lenjou ◽  
Griet Nijs ◽  
...  

Abstract Dendritic cells (DC), the professional antigen presenting cells of the immune system, exert important functions both in induction of T cell immunity as well as of tolerance. Previously, it was accepted that the main function of immature DC (iDC) in their in vivo steady state condition is to maintain peripheral tolerance to self-antigens and that these iDC mature upon encounter of so-called danger signals and subsequently promote T cell immunity. However, a growing body of experimental evidence now indicates that traditional DC maturation can no longer be used to distinguish between tolerogenic and immunogenic properties of DC. In this study, we compared the in vitro stimulatory capacity of immature DC (iDC), cytokine cocktail-matured DC (CC-mDC) and poly I:C-matured DC (pIC-mDC) in the absence and presence of antigen. All investigated DC types could induce at least 2 subsets of regulatory T cells. We observed a significant increase in both the number of functionally suppressive transforming growth factor (TGF)-beta+ interleukin (IL)-10+ T cells as well as of CD4+CD25+FOXP3+ T cells within DC/T cell co-cultures as compared to T cell cultures without DC. The induction of these regulatory T cells correlates with in vitro T cell non-responsiveness after co-culture with iDC and CC-mDC, while stimulation with pIC-mDC resulted in reproducible cytomegalovirus pp65 or influenza M1 matrix peptide-specific T cell activation as compared to control cultures in the absence of DC. In addition, the T cell non-responsiveness after stimulation with iDC was shown to be mediated by TGF-beta and IL-10. Moreover, the suppressive capacity of CD4+ T cells activated by iDC and CC-mDC was shown to be transferable when these CD4+ T cells were added to an established T cell response. In contrast, addition of CD4+ T cells stimulated by pIC-mDC made responder T cells refractory to their suppressive activity. In conclusion, we hypothesize that DC have a complementary role in inducing both regulatory T cells and effector T cells, where the final result of antigen-specific T cell activation will depend on the activation state of the DC. This emphasizes the need for proper DC activation when T cell immunity is the desired effect, especially when used in clinical trials.


2021 ◽  
Vol 21 (3) ◽  
pp. 178-192
Author(s):  
D. A. Poteryaev ◽  
S. G. Abbasova ◽  
P. E. Ignatyeva ◽  
O. M. Strizhakova ◽  
S. V. Kolesnik ◽  
...  

With the onset of the COVID-19 pandemic, a number of molecular-based tests have been developed to diagnose SARS-CoV-2 infection. However, numerous available serological tests lack sufficient sensitivity or specificity. They do not detect specific antibodies in a significant proportion of patients with PCR-confirmed COVID-19. There is evidence that some convalescents have a relatively short-lived humoral immunity. In contrast, a number of publications have shown that T-cell response to human coronaviruses, including SARS-CoV-1, MERS, and SARS-CoV-2, can be strong and long-term. Assessment of T-cell immunity to SARS-CoV-2 is important not only for stratification of risks and identification of potentially protected populations with immunity acquired as a result of previous infection, but also for determining immunogenicity and potential efficacy of vaccines under development. The existing methods of quantitative or semi-quantitative assessment of specific T-cell response are mainly used in scientific research and are not standardised. The aim of the study was to develop and verify experimentally a test kit to be used in a standardised procedure for in vitro determination of T-cells specific to SARS-CoV-2 antigens, in human peripheral blood. Materials and methods: the TigraTest® SARS-CoV-2 kit developed by GENERIUM, which determines the number of T-cells secreting interferon gamma in vitro, was tested in the study. Samples of venous blood of volunteers from three different groups were analysed in the study: presumably healthy volunteers; COVID-19 convalescents; individuals vaccinated against SARS-CoV-2. Results: the authors developed the TigraTest® SARS-CoV-2 kit for in vitro determination of T-cells specific to SARS-CoV-2 antigens in human peripheral blood, demonstrated its specificity and performed preliminary assessment of its sensitivity. The study analysed the range and magnitude of the T-cell response in convalescent and vaccinated individuals. A pronounced T-cell response was also shown in some individuals with no symptoms or with unconfirmed diagnosis. It was discovered that the mean T-cell response to peptides of the spike protein (S-protein) was higher in the vaccinated individuals than in the convalescent patients. A correlation was determined between the severity of the disease and the level of T-cell response. Specific contributions of various groups of antigens to the T-cell response after COVID-19 infection were also determined. Conclusions: the TigraTest® SARS-CoV-2 kit is a specific and sensitive tool for the assessment of T-cell immunity to the SARS-CoV-2 virus, which can also be used for vaccinated individuals. The kit may be used in clinical practice for comprehensive assessment of immunity to SARS-CoV-2.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1089-1089
Author(s):  
Matteo Iannacone ◽  
Giovanni Sitia ◽  
Masanori Isogawa ◽  
Jason K. Whitmire ◽  
Patrizia Marchese ◽  
...  

Abstract Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic mouse pathogen of the arenaviridae family. Acute LCMV infection in adult mice has been extensively studied and found to be systemic, essentially asymptomatic and associated with a bone marrow aplasia that produces a transient pancytopenic state. The initial lymphopenia is rapidly reversed, such that within one week of LCMV exposure the mice display lymphocytosis and clear the infection through a response mediated by virus-specific cytotoxic T cells (CTLs). In spite of the thrombocytopenia, the occurrence of hemorrhage in these animals has not been previously investigated, likely because of the lack of overt bleeding symptoms. Other arenaviruses (such as Lassa and Junin) produce systemic infections in humans and cause hemorrhagic diseases that are often lethal. Hemorrhage, mostly mucosal and cutaneous, occurs in the context of profound thrombocytopenia (characteristic of Junin infection) and/or platelet dysfunction (characteristic of Lassa infection), but without disseminated intravascular coagulation (DIC) or other coagulation defects. The pathogenesis of arenavirus infections in humans remains elusive, although disease severity has been associated with the extent of hemorrhage, impaired cellular immunity and lack of viral clearance. We recently showed that platelets may contribute to viral pathogenesis by facilitating the accumulation of virus-specific CTLs at sites of infection. Thus, we reasoned that the thrombocytopenia and/or platelet dysfunction that typify arenavirus infections in humans might not only predispose to the development of hemorrhage but also compromise CTL-mediated viral clearance. Here we report our studies based on the model of LCMV infection in mice. We found that normal inbred mice infected with different isolates of LCMV develop thrombocytopenia associated with decreased platelet function, but show only limited mucosal hemorrhage prior to CD8+ T cell-mediated viral clearance. In contrast, mice depleted of platelets, but not those given anticoagulant treatment, fail to produce a normal CD8+ T cell response or clear LCMV; instead, they develop an interferon (IFN)-α/β-dependent lethal hemorrhagic infection. Transfusion of normal but not activation-blocked platelets into these animals restored the CD8+ T cell responses and allowed clearance of the infection, preventing hemorrhage and death. These results indicate that activated platelets are required for CD8+ T cells to clear LCMV infection and for protecting the host against the induction of an IFN-α/β-dependent, lethal hemorrhagic diathesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3240-3240
Author(s):  
Hannah Cullup ◽  
John Wilson ◽  
Alison M. Rice ◽  
Anne M. Dickinson ◽  
David J. Munster ◽  
...  

Abstract AGVHD is a life threatening complication of allogeneic HSCT, initiated by host and donor DC stimulation of donor T lymphocytes. Current AGVHD prophylaxis targets T lymphocytes, compromising anti-viral and therapeutic anti-leukemic responses. The presence of activated blood DC predicts for clinical AGVHD and we predict that a new strategy targeting therapy to activated DC should prevent alloimmune induction of AGVHD but preserve protective T cell immune responses. CD83 is a cell surface molecule expressed by activated DC. Having shown that a rabbit polyclonal antibody to human CD83 (RA83) depletes activated DC and suppresses alloimmune reactions in vitro, we tested the effect of RA83 treatment on T cell immunity in vitro and its ability to prevent human PBMC induced xenogeneic AGVHD in vivo. The effect of RA83 treatment on T cell numbers, proliferation and cytokine secretion in allogeneic MLR was compared with appropriate controls, including Campath-1H. Allogeneic responses in vitro were mirrored in a DC dependent in vivo model of xenogeneic AGVHD, in which 50×106 human PBMC were injected into an irradiated SCID mouse. Human cytokine levels were measured in MLR tissue culture supernatant (TCSN) and mouse serum at the time of sacrifice. Cytotoxic T cell responses to viral antigens (CMV and FMP) were analysed by specific pentamer analysis and Cr51 release assays, prior to and following HLA restricted peptide antigen specific expansion. RA83 was shown to have NK-mediated ADCC capacity. Cellular proliferation in the allogeneic MLR was reduced by both RA83 and Campath-1H treatment (p= 0.004 and 0.01 respectively vs controls) and both antibodies improved mouse survival in the human xenogenic AGVHD model (RA83: 93%, Campath-1H: 100%, p<0.0001). IFN-g was significantly reduced in the TCSN from MLR treated with RA83 (p=0.0391) and in sera taken from RA83 (p=0.0002) and Campath-1H (p=0.0051) treated mice. Serum IL-4 levels were maintained in RA83 and Campath-1H treated mice. The serum levels of IL-5, IL-8 and TNF in mice treated with RA83 were markedly reduced compared to controls (p=0.0256, 0.0025, 0.025, respectively), and the reductions were similar to those seen in Campath-1H treated mice. Similar numbers of T cells were recovered from RA83 treated and control MLR, and both CMV and FMP specific CD8+ T cells were retained. These cells were readily expanded by peptide pulsing and autologous restimulation and had specific cytotoxic activity comparable to control cultures (see figure). In contrast, Campath-1H treatment removed specific anti-viral responses (vs controls: CMV: p<0.00001 and FMP: p=0.0051). Specific antibody to CD83 depletes activated DC in vitro and prevents xenogeneic human DC dependent AGVHD in vivo. This was accompanied by a Th1 to Th2 skewing of the cytokine response. RA83, but not Campath-1H treatment retained normal numbers of T cells and maintained normal cytotoxic responses to common post-transplant viral infections. Depletion of activated DC may be an effective means of AGVHD control, which maintains T cell immunity to life threatening infections and potentially anti-leukaemia responses. RA83 treatment of allo-MLR preserves T cell anti-CMV immunity RA83 treatment of allo-MLR preserves T cell anti-CMV immunity


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Ruchi Srivastava ◽  
Arif A. Khan ◽  
Sravya Chilukuri ◽  
Sabrina A. Syed ◽  
Tien T. Tran ◽  
...  

ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8+ T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8+ T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8+ T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3+ CD8+ T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10−/− or CXCR3−/− deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10−/− mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8+ T cells (TEM) and tissue-resident memory CD8+ T cells (TRM), but not of central memory CD8+ T cells (TCM), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10−/− deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8+ T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease. IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8+ T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8+ TEM and CD8+ TRM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8+ TEM and CD8+ TRM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel “prime/pull” therapeutic ocular herpes vaccine strategy is proposed and discussed.


Blood ◽  
2002 ◽  
Vol 99 (6) ◽  
pp. 2146-2153 ◽  
Author(s):  
James L. LaBelle ◽  
Carrie A. Hanke ◽  
Bruce R. Blazar ◽  
Robert L. Truitt

Abstract B7 molecules provide important costimulatory signals to T cells, and B7 genes have been introduced into B7-negative tumor cells to enhance their immunogenicity. However, the role of B7 molecules in inducing tumor immunity is controversial because of conflicting results and reports of differential signaling through the B7 molecules and their ligands CD28 and CTLA-4. In this study, we compared the effect of B7-1 (CD80) and B7-2 (CD86) on the induction of T-cell immunity to C1498, a murine myelogenous leukemia. When cultured with exogenous cytokines in vitro, C1498/B7-1 and C1498/B7-2 induced syngeneic CD8+ T cells to kill parental C1498. In vivo, C1498/B7-1 grew progressively after subcutaneous injection, whereas C1498/B7-2 completely regressed after transient growth in naive mice. Spontaneous rejection of C1498/B7-2 resulted in immunity to challenge doses of C1498 and C1498/B7-1. Antibody-depletion studies in vivo showed that CD8+ T cells rejected C1498/B7-2, whereas only natural killer cells affected the growth of C1498/B7-1. Two approaches were used to determine whether preferential interaction of B7-1 with CTLA-4 contributed to the failure of C1498/B7-1 to activate CD8+ T cells in vivo. First, CTLA-4 specific monoclonal antibody was used to block B7-1–CTLA-4 interaction. Second, CTLA-4 deletional mutant (−/−) bone marrow chimeras were used as tumor hosts. In both systems, there was a significant increase in the rate of rejection of C1498/B7-1 tumors. Resistance to C1498/B7-1 in CTLA-4−/− hosts was mediated by CD8+ T cells. Blocking or deletion of CTLA-4 did not affect the growth of parental C1498, indicating that B7-1 was important for the induction of CD8+ T-cell immunity in the absence of CTLA-4.


Sign in / Sign up

Export Citation Format

Share Document