scholarly journals Dimerization of the Papillomavirus E2 Protein Is Required for Efficient Mitotic Chromosome Association and Brd4 Binding

2008 ◽  
Vol 82 (15) ◽  
pp. 7298-7305 ◽  
Author(s):  
Juan Cardenas-Mora ◽  
Jonathan E. Spindler ◽  
Moon Kyoo Jang ◽  
Alison A. McBride

ABSTRACT The E2 proteins of several papillomaviruses link the viral genome to mitotic chromosomes to ensure retention and the efficient partitioning of genomes into daughter cells following cell division. Bovine papillomavirus type 1 E2 binds to chromosomes in a complex with Brd4, a cellular bromodomain protein. Interaction with Brd4 is also important for E2-mediated transcriptional regulation. The transactivation domain of E2 is crucial for interaction with the Brd4 protein; proteins lacking or mutated in this domain do not interact with Brd4. However, we found that the C-terminal DNA binding/dimerization domain of E2 is also required for efficient binding to Brd4. Mutations that eliminated the DNA binding function of E2 had no effect on the ability of E2 to interact with Brd4, but an E2 protein with a mutation that disrupted C-terminal dimerization bound Brd4 with greatly reduced efficiency. Furthermore, E2 proteins in which the C-terminal domains were replaced with the dimeric DNA binding domain of EBNA-1 or Gal4 bound efficiently to the Brd4 protein, but the replacement of the E2 C-terminal domain with a monomeric red fluorescent protein did not rescue efficient Brd4 binding. Thus, E2 bound to Brd4 most efficiently as a dimer. To prove this finding further, the E2 DNA binding domain was replaced with an FKBP12-derived domain in which dimerization was regulated by a bivalent ligand. This fusion protein bound Brd4 efficiently only in the presence of the ligand, confirming that a dimer of E2 was required. Correspondingly, E2 proteins that could dimerize were able to bind to mitotic chromosomes much more efficiently than monomeric E2 polypeptides.

2001 ◽  
Vol 82 (10) ◽  
pp. 2341-2351 ◽  
Author(s):  
Kelly J. Woytek ◽  
Dhandapani Rangasamy ◽  
Cynthia Bazaldua-Hernandez ◽  
Mike West ◽  
Van G. Wilson

The interaction between papillomavirus E1 and E2 proteins is essential for viral genome replication. Using both in vivo and in vitro assays to evaluate the regions of the two proteins necessary for the E1–E2 interaction, three independent interactions were identified for bovine papillomavirus E1: the N terminus of E1 (E1N, residues 1–311) interacts with the E2 transactivation domain (E2TAD) and the E2 DNA-binding domain (E2DBD) and the C terminus of E1 (E1C, residues 315–605) interacts with E2. Nine mutations within E1N were evaluated for their effects on E2 interaction. Five mutations eliminated interaction with the E2TAD; four of these were located within two previously identified conserved, hydrophilic regions, HR1 and HR3. Since HR1 and HR3 residues appear to comprise the origin of replication recognition element for E1, simultaneous interaction with the E2TAD during initiation complex formation would seem unlikely. Consistent with this inference is the fact that three of the five mutants defective for E2TAD binding exhibited wild-type levels of replication. The replication-positive phenotype of these mutants suggests that the E1N–E2TAD interaction is not essential for replication function and is probably involved in some other E1–E2 function, such as regulating transcription. Only one of the five mutations defective for E2TAD binding also prevented E2DBD interaction, indicating that the regions of E1N that interact with the E2TAD and the E2DBD are not identical. The ability of E1N to cooperatively interact with E2 bound to E2-binding site (E2BS) 11 versus E2BS12 was also examined, and cooperative binding was only observed when E2 was bound to E2BS12.


1997 ◽  
Vol 71 (1) ◽  
pp. 828-831 ◽  
Author(s):  
R B Pepinsky ◽  
S S Prakash ◽  
K Corina ◽  
M J Grossel ◽  
J Barsoum ◽  
...  

2005 ◽  
Vol 79 (3) ◽  
pp. 1500-1509 ◽  
Author(s):  
Peng-Sheng Zheng ◽  
Jane Brokaw ◽  
Alison A. McBride

ABSTRACT The papillomavirus E2 protein is required for viral transcriptional regulation, DNA replication and genome segregation. We have previously shown that the E2 transactivator protein and BPV1 genomes are associated with mitotic chromosomes; E2 links the genomes to cellular chromosomes to ensure efficient segregation to daughter nuclei. The transactivation domain of the E2 protein is necessary and sufficient for association of the E2 protein with mitotic chromosomes. To determine which residues of this 200-amino-acid domain are important for chromosomal interaction, E2 proteins with amino acid substitutions in each conserved residue of the transactivation domain were tested for their ability to associate with mitotic chromosomes. Chromatin binding was assessed by using immunofluorescence on both spread and directly fixed mitotic chromosomes. E2 proteins defective in the transactivation and replication functions were unable to associate with chromosomes, and those that were competent in these functions were attached to mitotic chromosomes. However, several mutated proteins that were defective for chromosomal interaction could associate with chromosomes after treatment with agents that promote protein folding or when cells were incubated at lower temperatures. These results indicate that precise folding of the E2 transactivation domain is crucial for its interaction with mitotic chromosomes and that this association can be modulated.


1998 ◽  
Vol 72 (2) ◽  
pp. 1013-1019 ◽  
Author(s):  
Jun-Mei Yao ◽  
David E. Breiding ◽  
Elliot J. Androphy

ABSTRACT Induction of gene expression by the papillomavirus E2 protein requires its ∼220-amino-acid amino-terminal transactivation domain (TAD) to interact with cellular factors that lead to formation of an activated RNA polymerase complex. These interaction partners have yet to be identified and characterized. The E2 protein localizes the transcription complex to the target promoter through its carboxy-terminal sequence-specific DNA binding domain. This domain has been reported to bind the basal transcription factors TATA-binding protein and TFIIB. We present evidence establishing a direct interaction between amino acids 74 to 134 of the E2 TAD and TFIIB. Within this region, the E2 point mutant N127Y was partially defective and W99C was completely defective for TFIIB binding in vitro, and these mutants displayed reduced or no transcriptional activity, respectively, upon transfection into C33A cells. Overexpression of TFIIB specifically restored transactivation by N127Y to close to wild-type levels, while W99C remained inactive. To further demonstrate the functional interaction of TFIIB with the wild-type E2 TAD, this region was fused to a bacterial DNA binding domain (LexA:E2:1-216). Upon transfection with increasing amounts of LexA:E2:1-216, there was reduction of its transcriptional activity, a phenomenon thought to result from titration of limiting factors, or squelching. Squelching of LexA:E2:1-216, or the wild-type E2 activator, was partially relieved by overexpression of TFIIB. We conclude that a specific region of the E2 TAD functionally interacts with TFIIB.


2005 ◽  
Vol 79 (14) ◽  
pp. 8920-8932 ◽  
Author(s):  
Maria G. McPhillips ◽  
Keiko Ozato ◽  
Alison A. McBride

ABSTRACT The bovine papillomavirus E2 protein maintains and segregates the viral extrachromosomal genomes by tethering them to cellular mitotic chromosomes. E2 interacts with a cellular bromodomain protein, Brd4, to mediate the segregation of viral genomes into daughter cells. Brd4 binds acetylated histones and has been observed to diffusely coat mitotic chromosomes in several cell types. In this study, we show that in mitotic C127 cells, Brd4 diffusely coated the condensed chromosomes. However, in the presence of the E2 protein, E2 and Brd4 colocalized in punctate dots that were randomly distributed over the chromosomes. A similar pattern of E2 and Brd4 colocalization on mitotic chromosomes was observed in CV-1 cells, whereas only a faint chromosomal coating of Brd4 was detected in the absence of the E2 protein. Therefore, the viral E2 protein relocalizes and/or stabilizes the association of Brd4 with chromosomes in mitotic cells. The colocalization of E2 and Brd4 was also observed in interphase cells, indicating that this protein-protein interaction persists throughout the cell cycle. The interaction of E2 with Brd4 greatly stabilized the association of Brd4 with interphase chromatin. In both mitotic and interphase cells, this stabilization required a transcriptionally competent transactivation domain, but not the DNA binding function of the E2 protein. Thus, the E2 protein modulates the chromatin association of Brd4 during both interphase and mitosis. This study demonstrates that the segregation of papillomavirus genomes is not simply due to the passive hitchhiking of the E2/genome complex with a convenient cellular chromosomal protein.


1998 ◽  
Vol 335 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Fred SCHAPER ◽  
Sabine KIRCHHOFF ◽  
Guido POSERN ◽  
Mario KÖSTER ◽  
André OUMARD ◽  
...  

Interferon (IFN) regulatory factors (IRFs) are a family of transcription factors among which are IRF-1, IRF-2, and IFN consensus sequence binding protein (ICSBP). These factors share sequence homology in the N-terminal DNA-binding domain. IRF-1 and IRF-2 are further related and have additional homologous sequences within their C-termini. Whereas IRF-2 and ICSBP are identified as transcriptional repressors, IRF-1 is an activator. In the present work, the identification of functional domains in murine IRF-1 with regard to DNA-binding, nuclear translocation, heterodimerization with ICSBP and transcriptional activation are demonstrated. The minimal DNA-binding domain requires the N-terminal 124 amino acids plus an arbitrary C-terminal extension. By using mutants of IRF-1 fusion proteins with green fluorescent protein and monitoring their distribution in living cells, a nuclear location signal (NLS) was identified and found to be sufficient for nuclear translocation. Heterodimerization was confirmed by a two-hybrid system adapted to mammalian cells. The heterodimerization domain in IRF-1 was defined by studies in vitroand was shown to be homologous with a sequence in IRF-2, suggesting that IRF-2 also heterodimerizes with ICSBP through this sequence. An acidic domain in IRF-1 was found to be required and to be sufficient for transactivation. Epitope mapping of IRF-1 showed that regions within the NLS, the heterodimerization domain and the transcriptional activation domain are exposed for possible contacts with interacting proteins.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 772-772
Author(s):  
Ming Yan ◽  
Scott Hiebert ◽  
Dong-Er Zhang

Abstract The 8;21 translocation, which involves the gene encoding the RUNX family DNA binding transcription factor AML1 (RUNX1) on chromosome 21 and the ETO (MTG8) gene on chromosome 8, generates AML1−ETO fusion proteins. Previous analyses have demonstrated that full length AML1−ETO blocks AML1 function and requires additional mutagenic events to promote leukemia in mice. More recently, we have identified an alternatively spliced form of AML1−ETO, AML1−ETO9a, from t(8;21) AML patient samples (Yan et al. Nat. Med.12:945–949, 2006). AML1−ETO9a lacks the C−terminal NHR3 and NHR4 domains of AML1−ETO and is highly leukemogenic in mice. Here, we report that the AML1 DNA binding domain and the ETO NHR2 dimerization domain, but not the ETO NHR1 domain are critical for the induction of acute myeloid leukemia by AML1−ETO9a. Using retroviral mediated gene expression and hematopoietic cell transplantation in recipient mice, we examined AML1−ETO9a, AML1−ETO9a without the NHR1 domain [AML1−ETO9a (dNHR1)] or the NHR2 domain [AML1−ETO9a(dNHR2)], without a histone deacetylase/Sin3A interacting domain between NHR1 and NHR2 [AML1−ETO9a(d350–428)], and mutant AML1−ETO9a proteins that have lost the capacity to bind DNA [AML1−ETO9a(L148D)] and [AML1−ETO9a(R173Q)] in leukemogenesis. All of the mice transplanted with AML1−ETO9a (n =11) and AML1−ETO9a(dNHR1) (n = 12) expressing cells developed acute myeloid leukemia with a similar phenotype (Lin−/c−kit+) within 21 weeks. The median survival times of mice with AML1−ETO9a and AML1−ETO9a(dNHR1) are 9.4 weeks and 10.5 weeks, respectively. Furthermore, all of the mice expressing AML1−ETO9a(d350–428) (n = 11) also developed leukemia with a median survival time of 17.2 weeks. Significant numbers of AML1−ETO9a(d350–428) expressing cells are positive for myeloid markers CD11b and Gr1 in these leukemic mice. In contrast, none of the mice with AML1−ETO9a(dNHR2) (n = 14), AML1−ETO9a(L148D) (n = 8), and AML1−ETO9a(R173Q) (n = 8) expressing hematopoietic cells developed leukemia. Taken together, these data suggest that the AML1 DNA binding domain and the ETO NHR2 domain are required for AML1−ETO9a induced leukemia development and the region between amino acids 350 and 428 of AML1−ETO9a also affects the differentiation stage and latency of leukemogenesis.


Sign in / Sign up

Export Citation Format

Share Document