scholarly journals A Mobile Functional Region of Kaposi's Sarcoma-Associated Herpesvirus ORF50 Protein Independently Regulates DNA Binding and Protein Abundance

2008 ◽  
Vol 82 (19) ◽  
pp. 9700-9716 ◽  
Author(s):  
Pey-Jium Chang ◽  
Duane Shedd ◽  
George Miller

ABSTRACT The protein encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) functions as a transcriptional activator and in lytic viral DNA replication to mediate the switch from latent viral infection to the lytic phase. Here we identify regulatory regions of ORF50 protein that independently control DNA binding and abundance of the protein. One region contains a DNA-binding inhibitory sequence (DBIS) located between amino acids (aa) 490 and 535 of ORF50. A cluster of basic amino acids in this sequence is important in inhibiting DNA binding. The DBIS can function at the N or C terminus or internally in the ORF50 protein. Since the DBIS is functional in ORF50 protein purified from Escherichia coli, it is likely to work through an intramolecular mechanism. The second regulatory region, a protein abundance regulatory signal (PARS), consists of two components. Component I of the PARS overlaps the DBIS but can be differentiated from the DBIS by specific substitution of basic amino acid residues. Component II of PARS is located between aa 590 and 650. Mutation or deletion of either component results in abundant expression of ORF50 protein. When the two-component PARS was fused to a heterologous protein, Glutathione S-transferase, the fusion protein was unstable. Mutations in the DBIS or PARS impair the capacity of ORF50 to activate direct and indirect target viral promoters. Since these overlapping regulatory motifs are located in the C-terminal transactivation domain, they are likely to be important in controlling many actions of ORF50 protein.

2004 ◽  
Vol 78 (19) ◽  
pp. 10657-10673 ◽  
Author(s):  
Pey-Jium Chang ◽  
George Miller

ABSTRACT A transcriptional activator encoded in open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) initiates the viral lytic cycle. ORF50 protein activates downstream KSHV target genes by at least two mechanisms: direct recognition of response elements in promoter DNA and interaction with cellular proteins bound to promoter DNA. We have identified a multifunctional regulatory region, present in amino acids (aa) 520 to 535 of ORF50 protein, that controls DNA binding and protein stability. Deletion of aa 521 to 534 or mutation of a basic motif (KKRK) in this regulatory region dramatically enhances DNA binding by ORF50 protein, as shown by electrophoretic mobility shift, DNA affinity chromatography, and chromatin immunoprecipitation assays. Deletion of the regulatory region and mutations in the KKRK motif also lead to abundant expression of an electrophoretic mobility variant, ORF50B, which appears to be a form of ORF50 protein that is decreased in posttranslational modification. Enhanced DNA binding and enhanced expression of ORF50B are independent phenomena. The regulatory region likely inhibits DNA binding through interactions with the DNA binding domain in aa 1 to 390 and destabilizes ORF50B through interactions with a domain located in aa 590 to 650. Mutants in the KKRK motif that are enhanced in DNA binding are nonetheless impaired in activating direct targets, such as polyadenylated nuclear RNA, and indirect targets, such as ORF50 itself. The identification of an autoregulatory region emphasizes that the many functions of ORF50 protein must be subject to exquisite control to achieve optimal KSHV lytic-cycle gene expression.


2006 ◽  
Vol 80 (19) ◽  
pp. 9697-9709 ◽  
Author(s):  
Kyla Driscoll Carroll ◽  
Wei Bu ◽  
Diana Palmeri ◽  
Sophia Spadavecchia ◽  
Stephen J. Lynch ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) lytic switch protein, Rta, is a ligand-independent inducer of the Notch signal transduction pathway, and KSHV cannot reactivate from latency in cells null for the Notch target protein RBP-Jk. Here we show that Rta promotes DNA binding of RBP-Jk, a mechanism that is fundamentally different from that established for the RBP-Jk-activating proteins, Notch intracellular domain (NICD) and Epstein-Barr virus EBNA2. Although constitutively active RBP-Jk and NICD do not transactivate KSHV promoters independently, cotransfection of an Rta mutant lacking its transactivation domain robustly restores transcriptional activation. Cooperation requires intact DNA binding sites for Rta and RBP-Jk and trimeric complex formation between the three molecules in vitro. In infected cells, RBP-Jk is virtually undetectable on a series of viral and cellular promoters during KSHV latency but is significantly enriched following Rta expression during viral reactivation. Accordingly, Rta, but not EBNA2 and NICD, reactivates the complete viral lytic cycle.


2015 ◽  
Vol 89 (9) ◽  
pp. 4786-4797 ◽  
Author(s):  
Xin Zheng ◽  
Eriko Ohsaki ◽  
Keiji Ueda

ABSTRACTAngiopoietin-1 (ANGPT-1) is a secreted glycoprotein that was first characterized as a ligand of the Tie2 receptor. In a previous study using microarray analysis, we found that the expression of ANGPT-1 was upregulated in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected primary effusion lymphoma (PEL) cell lines compared with that in uninfected Burkitt and other leukemia cell lines. Other authors have also reported focal expression of ANGPT-1 mRNA in biopsy specimens of Kaposi's sarcoma (KS) tissue from patients with AIDS. Here, to confirm these findings, we examined the expression and secretion levels of ANGPT-1 in KSHV-infected PEL cell lines and address the mechanisms ofANGPT-1transcriptional regulation. We also showed that ANGPT-1 was expressed and localized in the cytoplasm and secreted into the supernatant of KSHV-infected PEL cells. Deletion studies of the regulatory region revealed that the region encompassing nucleotides −143 to −125 of theANGPT-1-regulating sequence was responsible for this upregulation. Moreover, an electrophoretic mobility shift assay and chromatin immunoprecipitation, followed by quantitative PCR, suggested that some KSHV-infected PEL cell line-specific DNA-binding factors, such as OCT-1, should be involved in the upregulation ofANGPT-1in a sequence-dependent manner.IMPORTANCEWe confirmed that ANGPT-1 was expressed in and secreted from KSHV-infected PEL cells and that the transcriptional activity ofANGPT-1was upregulated. A 19-bp fragment was identified as the region responsible forANGPT-1upregulation through binding with OCT-1 as a core factor in PEL cells. This study suggests that ANGPT-1 is overproduced in KSHV-infected PEL cells, which could affect the pathophysiology of AIDS patients with PEL.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Kelly Hew ◽  
Saranya Veerappan ◽  
Daniel Sim ◽  
Tobias Cornvik ◽  
Pär Nordlund ◽  
...  

ABSTRACT Herpesviruses alternate between the latent and the lytic life cycle. Switching into the lytic life cycle is important for herpesviral replication and disease pathogenesis. Activation of a transcription factor replication and transcription activator (RTA) has been demonstrated to govern this switch in Kaposi's sarcoma-associated herpesvirus (KSHV). The protein encoded by open reading frame 49 from KSHV (ORF49KSHV) has been shown to upregulate lytic replication in KSHV by enhancing the activities of the RTA. We have solved the crystal structure of the ORF49KSHV protein to a resolution of 2.4 Å. The ORF49KSHV protein has a novel fold consisting of 12 alpha-helices bundled into two pseudodomains. Most notably are distinct charged patches on the protein surface, which are possible protein-protein interaction sites. Homologs of the ORF49KSHV protein in the gammaherpesvirus subfamily have low sequence similarities. Conserved residues are mainly located in the hydrophobic regions, suggesting that they are more likely to play important structural roles than functional ones. Based on the identification and position of three sulfates binding to the positive areas, we performed some initial protein-DNA binding studies by analyzing the thermal stabilization of the protein in the presence of DNA. The ORF49KSHV protein is stabilized in a dose-responsive manner by double-stranded oligonucleotides, suggesting actual DNA interaction and binding. Biolayer interferometry studies also demonstrated that the ORF49KSHV protein binds these oligonucleotides. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a tumorigenic gammaherpesvirus that causes multiple cancers and lymphoproliferative diseases. The virus exists mainly in the quiescent latent life cycle, but when it is reactivated into the lytic life cycle, new viruses are produced and disease symptoms usually manifest. Several KSHV proteins play important roles in this reactivation, but their exact roles are still largely unknown. In this study, we report the crystal structure of the open reading frame 49 protein encoded by KSHV (ORF49KSHV). Possible regions for protein interaction that could harbor functional importance were found on the surface of the ORF49KSHV protein. This led to the discovery of novel DNA binding properties of the ORF49KSHV protein. Evolutionary conserved structural elements with the functional homologs of ORF49KSHV were also established with the structure.


2003 ◽  
Vol 77 (2) ◽  
pp. 1441-1451 ◽  
Author(s):  
Yoshihiro Izumiya ◽  
Su-Fang Lin ◽  
Thomas Ellison ◽  
Ling-Yu Chen ◽  
Chie Izumiya ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus that has been implicated in the pathogenesis of Kaposi's sarcoma and B-cell neoplasms. The genomic organization of KSHV is similar to that of Epstein-Barr virus (EBV). EBV encodes two transcriptional factors, Rta and Zta, which functionally interact to transactivate EBV genes during replication and reactivation from latency. KSHV encodes a basic leucine zipper protein (K-bZIP), a homologue of EBV Zta, and K-Rta, the homologue of EBV Rta. EBV Rta and Zta are strong transcriptional transactivators. Although there is ample evidence that K-Rta is a potent transactivator, the role of K-bZIP as a transcriptional factor is much less clear. In this study, we report that K-bZIP modulates K-Rta function. We show that K-bZIP directly interacts with K-Rta in vivo and in vitro. This association is specific, requiring the basic domain (amino acids 122 to 189) of K-bZIP and a specific region (amino acids 499 to 550) of K-Rta, and can be detected with K-bZIP and K-Rta endogenously expressed in BCBL-1 cells treated with tetradecanoyl phorbol acetate. The functional relevance of this association was revealed by the observation that K-bZIP represses the transactivation of the ORF57 promoter by K-Rta in a dose-dependent manner. K-bZIP lacking the interaction domain fails to repress K-Rta-mediated transactivation; this finding attests to the specificity of the repression. Interestingly, this repression is not observed for the promoter of polyadenylated nuclear (PAN) RNA, another target of K-Rta; thus, repression is promoter dependent. Finally, we provide evidence that the modulation of K-Rta by K-bZIP also occurs in vivo during reactivation of the viral genome in BCBL-1 cells. When K-bZIP is overexpressed in BCBL-1 cells, the level of expression of ORF57 but not PAN RNA is repressed. These data support the model that one function of K-bZIP is to modulate the activity of the transcriptional transactivator K-Rta.


2001 ◽  
Vol 75 (17) ◽  
pp. 7882-7892 ◽  
Author(s):  
Alexander C. Garber ◽  
Marla A. Shu ◽  
Jianhong Hu ◽  
Rolf Renne

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The latency-associated nuclear antigen (LANA) is highly expressed in these malignancies and has been shown to play an important role in episomal maintenance, presumably by binding to a putative oriP. In addition, LANA modulates cellular and viral gene expression and interacts with the cellular tumor suppressors p53 and retinoblastoma suppressor protein. Many of these features are reminiscent of Epstein-Barr virus nuclear antigens (EBNAs), a family of six proteins expressed during latency. EBNA-1 is required for episome maintenance, binds to oriP, and strongly activates transcription from two promoters, including its own. We have previously shown that LANA can transactivate its own promoter and therefore asked whether LANA, like EBNA-1, activates transcription by direct binding to DNA. By using recombinant LANA expressed from vaccinia virus vectors for electrophoretic mobility shift assays, we found that LANA does not bind to its own promoter. In contrast, LANA binds specifically to sequences containing an imperfect 20-bp palindrome in the terminal repeat (TR) of KSHV. We further show that the C-terminal domain of LANA is sufficient for site-specific DNA binding. Unlike EBNA-1, which activates transcription through binding of oriP, we found that LANA inhibits transcription from a single TR binding site. A multimerized TR as found in the viral genome results in strong transcriptional suppression when linked to a heterologous promoter. These data suggest that LANA, although fulfilling functions similar to those of EBNA-1, does so by very different mechanisms.


2003 ◽  
Vol 77 (12) ◽  
pp. 7093-7100 ◽  
Author(s):  
Abel Viejo-Borbolla ◽  
Emrah Kati ◽  
Julie A. Sheldon ◽  
Kavita Nathan ◽  
Karin Mattsson ◽  
...  

ABSTRACT The latency-associated nuclear antigen 1 (LANA-1) of Kaposi's sarcoma-associated herpesvirus (KSHV) is required for the maintenance and replication of viral episomal DNA. The binding sites for nuclear heterochromatin and transcriptional repressor complexes are located in an amino-terminal region of LANA-1, whereas those for viral episomal DNA, p53, pRB, and members of the BRD/fsh family of nuclear proteins are located in its carboxy-terminal domain. LANA-1 activates or represses several cellular and viral promoters. In this report we show that a domain of 15 amino acids (amino acids 1129 to 1143), located close to the carboxy-terminal end of LANA-1, is required for the interaction of LANA-1 with nuclear heterochromatin or nuclear matrix, and for the ability of LANA-1 to activate the Epstein-Barr virus Cp promoter. LANA-1 proteins that are tightly associated with nuclear heterochromatin or matrix differ in molecular weight from LANA-1 proteins that can be dissociated from the nuclear matrix by high-salt buffers, suggesting that posttranslational modifications may determine the association of LANA-1 with nuclear heterochromatin or matrix.


2008 ◽  
Vol 82 (14) ◽  
pp. 7144-7154 ◽  
Author(s):  
R. Subramanian ◽  
O. D'Auvergne ◽  
Haixia Kong ◽  
K. G. Kousoulas

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded glycoprotein B (gB) is an important determinant of viral infectivity and virion egress. A small interfering RNA (siRNA)-based strategy was devised to inhibit KSHV gB gene expression. Transient cotransfection of plasmids constitutively expressing gB and anti-gB siRNAs in 293 cells substantially inhibited gB mRNA levels and protein production. Similarly, transient expression of siRNAs into the primary effusion lymphoma cell line BCBL-1 caused a substantial reduction of gB transcripts and protein synthesis. TaqMan real-time PCR assays against the lytic KSHV gene ORF59 and infectivity assays on 293 cells were employed to assess the effect of inhibiting gB synthesis on virion egress from BCBL-1 cells and infectivity on 293 cells, respectively. These experiments showed that gB was essential for virion egress and infectivity. Transfection of a codon-optimized gB gene with the first 540 nucleotides altered, and therefore not recognized by anti-gB siRNAs that target the native but not the codon-optimized sequence, efficiently rescued virion egress and infectivity in BCBL-1 cells in the presence of siRNAs inhibiting wild-type gB expression. To assess the role of the cytoplasmic domain of gB in virion egress, mutant gB genes were generated specifying carboxyl terminal truncations of 25 and 58 amino acids disrupting two prominent predicted α-helical domains associated with virus-induced cell fusion. A third truncation removed the entire predicted cytoplasmic terminus of 84 amino acids, while a fourth truncation removed 110 amino acids, including the terminal most hydrophobic, intramembrane anchoring sequence. Virion egress experiments revealed that all truncated gBs facilitated virion egress from BCBL-1 cells, with the exception of the largest 110-amino-acid truncation, which removed the gB anchoring sequence. Importantly, the gB truncation that removed the entire predicted cytoplasmic domain increased virion egress, suggesting the presence of a egress regulation domain located proximal to the intramembrane sequence within the cytoplasmic domain of gB. All supernatant virions were infectious on 293 cells, indicating that the carboxyl terminus of gB is not essential for either virion egress or virus infectivity.


2001 ◽  
Vol 75 (15) ◽  
pp. 6786-6799 ◽  
Author(s):  
David M. Lukac ◽  
Lilit Garibyan ◽  
Jessica R. Kirshner ◽  
Diana Palmeri ◽  
Don Ganem

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus-8) establishes latent and lytic infections in both lymphoid and endothelial cells and has been associated with diseases of both cell types. The KSHV open reading frame 50 (ORF50) protein is a transcriptional activator that plays a central role in the reactivation of lytic viral replication from latency. Here we identify and characterize a DNA binding site for the ORF50 protein that is shared by the promoters of two delayed early genes (ORF57 and K-bZIP). Transfer of this element to heterologous promoters confers on them high-level responsiveness to ORF50, indicating that the element is both necessary and sufficient for activation. The element consists of a conserved 12-bp palindromic sequence and less conserved sequences immediately 3′ to it. Mutational analysis reveals that sequences within the palindrome are critical for binding and activation by ORF50, but the presence of a palindrome itself is not absolutely required. The 3′ flanking sequences also play a critical role in DNA binding and transactivation. The strong concordance of DNA binding in vitro with transcriptional activation in vivo strongly implies that sequence-specific DNA binding is necessary for ORF50-mediated activation through this element. Expression of truncated versions of the ORF50 protein reveals that DNA binding is mediated by the amino-terminal 272 amino acids of the polypeptide.


Sign in / Sign up

Export Citation Format

Share Document