scholarly journals Full-Length Characterization of Hepatitis C Virus Subtype 3a Reveals Novel Hypervariable Regions under Positive Selection during Acute Infection

2009 ◽  
Vol 83 (22) ◽  
pp. 11456-11466 ◽  
Author(s):  
Isla Humphreys ◽  
Vicki Fleming ◽  
Paolo Fabris ◽  
Joe Parker ◽  
Bodo Schulenberg ◽  
...  

ABSTRACT Hepatitis C virus subtype 3a is a highly prevalent and globally distributed strain that is often associated with infection via injection drug use. This subtype exhibits particular phenotypic characteristics. In spite of this, detailed genetic analysis of this subtype has rarely been performed. We performed full-length viral sequence analysis in 18 patients with chronic HCV subtype 3a infection and assessed genomic viral variability in comparison to other HCV subtypes. Two novel regions of intragenotypic hypervariability within the envelope protein E2, of HCV genotype 3a, were identified. We named these regions HVR495 and HVR575. They consisted of flanking conserved hydrophobic amino acids and central variable residues. A 5-amino-acid insertion found only in genotype 3a and a putative glycosylation site is contained within HVR575. Evolutionary analysis of E2 showed that positively selected sites within genotype 3a infection were largely restricted to HVR1, HVR495, and HVR575. Further analysis of clonal viral populations within single hosts showed that viral variation within HVR495 and HVR575 were subject to intrahost positive selecting forces. Longitudinal analysis of four patients with acute HCV subtype 3a infection sampled at multiple time points showed that positively selected mutations within HVR495 and HVR575 arose early during primary infection. HVR495 and HVR575 were not present in HCV subtypes 1a, 1b, 2a, or 6a. Some variability that was not subject to positive selection was present in subtype 4a HVR575. Further defining the functional significance of these regions may have important implications for genotype 3a E2 virus-receptor interactions and for vaccine studies that aim to induce cross-reactive anti-E2 antibodies.

2010 ◽  
Vol 84 (3) ◽  
pp. 1664-1664
Author(s):  
I. Humphreys ◽  
V. Fleming ◽  
P. Fabris ◽  
J. Parker ◽  
B. Schulenberg ◽  
...  

2007 ◽  
Vol 88 (2) ◽  
pp. 458-469 ◽  
Author(s):  
Richard J. P. Brown ◽  
Alexander W. Tarr ◽  
C. Patrick McClure ◽  
Vicky S. Juttla ◽  
Nader Tagiuri ◽  
...  

Investigation of the mechanisms underlying hepatitis C virus (HCV) envelope glycoprotein gene evolution will greatly assist rational development of broadly neutralizing antibody-based vaccines or vaccine components. Previously, comprehensive cross-genotype evolutionary studies of E1E2 have not been possible due to the paucity of full-length envelope gene sequences representative of all major HCV genotypes (1–6) deposited in international sequence databases. To address this shortfall, a full-length E1E2 clone panel, corresponding to genotypes of HCV that were previously under-represented, was generated. This panel, coupled with divergent isolates available via international sequence databases, was subjected to high-resolution methods for determining codon-substitution patterns, enabling a fine-scale dissection of the selective pressures operating on HCV E1E2. Whilst no evidence for positive selection was observed in E1, the E2 protein contained a number of sites under strong positive selection. A high proportion of these sites were located within the first hypervariable region (HVR1), and statistical analysis revealed that cross-genotype adaptive mutations were restricted to a subset of homologous positions within this region. Importantly, downstream of HVR1, a differential genotype-specific distribution of adaptive mutations was observed, suggesting that subtly different evolutionary pressures shape present-day genotype diversity in E2 outside HVR1. Despite these observations, it is demonstrated that purifying selection due to functional constraint is the major evolutionary force acting on HCV E1E2. These findings are important in the context of neutralizing-antibody vaccine targeting, as well as in contributing to our understanding of E1E2 function.


2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Mingxiao Chen ◽  
Yi Xu ◽  
Ni Li ◽  
Ping Yin ◽  
Qing Zhou ◽  
...  

Hepatitis C virus (HCV) genotype 3 is widely distributed, and genotype 3-infected patients achieve a lower cure rate in direct-acting antiviral (DAA) therapy and are associated with a higher risk of hepatic steatosis than patients with other genotypes. Thus, the study of the virology and pathogenesis of genotype 3 HCV is increasingly relevant. Here, we developed a full-length infectious clone and a subgenomic replicon for the genotype 3a isolate, CH3a. From an infected serum, we constructed a full-length CH3a clone, however, it was nonviable in Huh7.5.1 cells. Next, we systematically adapted several intergenotypic recombinants containing Core-NS2 and 5′UTR-NS5A from CH3a, and other sequences from a replication-competent genotype 2 a clone JFH1. Adaptive mutations were identified, of which several combinations facilitated the replication of CH3a-JFH1 recombinants; however, they failed to adapt to the full-length CH3a and the recombinants containing CH3a NS5B. Thus, we attempted to separately adapt CH3a NS5B-3′UTR by constructing an intragenotypic recombinant using 5′UTR-NS5A from an infectious genotype 3a clone, DBN3acc, from which L3004P/M in NS5B and a deletion of 11 nucleotides (Δ11nt) downstream of the polyU/UC tract of the 3′UTR were identified and demonstrated to efficiently improve virus production. Finally, we combined functional 5′UTR-NS5A and NS5B-3′UTR sequences that carried the selected mutations to generate full-length CH3a with 26 or 27 substitutions (CH3acc), and both revealed efficient replication and virus spread in transfected and infected cells, releasing HCV of 104.2 f.f.u. ml−1. CH3acc was inhibited by DAAs targeting NS3/4A, NS5A and NS5B in a dose-dependent manner. The selected mutations permitted the development of subgenomic replicon CH3a-SGRep, by which L3004P, L3004M and Δ11nt were proven, together with a single-cycle virus production assay, to facilitate virus assembly, release, and RNA replication. CH3acc clones and CH3a-SGRep replicon provide new tools for the study of HCV genotype 3.


2014 ◽  
Vol 95 (8) ◽  
pp. 1677-1688 ◽  
Author(s):  
Chunhua Li ◽  
Ling Lu ◽  
Donald G. Murphy ◽  
Francesco Negro ◽  
Hiroaki Okamoto

We characterized the full-length genomes of nine hepatitis C virus genotype 3 (HCV-3) isolates: QC7, QC8, QC9, QC10, QC34, QC88, NE145, NE274 and 811. To the best of our knowledge, NE274 and NE145 were the first full-length genomes for confirming the provisionally assigned subtypes 3d and 3e, respectively, whereas 811 represented the first HCV-3 isolate that had its extreme 3′ UTR terminus sequenced. Based on these full-length genomes, together with 42 references representing eight assigned subtypes and an unclassified variant of HCV-3, and 10 sequences of six other genotypes, a timescaled phylogenetic tree was reconstructed after an evolutionary analysis using a coalescent Bayesian procedure. The results indicated that subtypes 3a, 3d and 3e formed a subset with a common ancestor dated to ~202.89 [95 % highest posterior density (HPD): 160.11, 264.6] years ago. The analysis of all of the HCV-3 sequences as a single lineage resulted in the dating of the divergence time to ~457.81 (95 % HPD: 350.62, 587.53) years ago, whereas the common ancestor of all of the seven HCV genotypes dated to ~780.86 (95 % HPD: 592.15, 1021.34) years ago. As subtype 3h and the unclassified variant were relatives, and represented the oldest HCV-3 lineages with origins in Africa and the Middle East, these findings may indicate the ancestral origin of HCV-3 in Africa. We speculate that the ancestral HCV-3 strains may have been brought to South Asia from Africa by land and/or across the sea to result in its indigenous circulation in that region. The spread was estimated to have occurred in the era after Vasco da Gama had completed his expeditions by sailing along the eastern coast of Africa to India. However, before this era, Arabians had practised slave trading from Africa to the Middle East and South Asia for centuries, which may have mediated the earliest spread of HCV-3.


2017 ◽  
Vol 162 (6) ◽  
pp. 1549-1561 ◽  
Author(s):  
Boban Mugosa ◽  
Eleonora Cella ◽  
Alessia Lai ◽  
Alessandra Lo Presti ◽  
Aletheia Blasi ◽  
...  

2013 ◽  
Vol 194 (1-2) ◽  
pp. 82-88
Author(s):  
Britta Lassmann ◽  
Vaithilingaraja Arumugaswami ◽  
Kara W. Chew ◽  
Martha J. Lewis

1995 ◽  
Vol 36 (2-3) ◽  
pp. 201-214 ◽  
Author(s):  
Ken-ichi Ohba ◽  
Masashi Mizokami ◽  
Tomoyoshi Ohno ◽  
Kaoru Suzuki ◽  
Etsuro Orito ◽  
...  

2000 ◽  
Vol 191 (9) ◽  
pp. 1499-1512 ◽  
Author(s):  
Franziska Lechner ◽  
David K.H. Wong ◽  
P. Rod Dunbar ◽  
Roger Chapman ◽  
Raymond T. Chung ◽  
...  

Although hepatitis C virus (HCV) infection is very common, identification of patients during acute infection is rare. Consequently, little is known about the immune response during this critical stage of the disease. We analyzed the T lymphocyte response during and after acute resolving HCV infection in three persons, using interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and human histocompatibility leukocyte antigen (HLA) peptide tetramer assays. Acute infection was associated with a broadly directed T helper and cytotoxic T lymphocyte (CTL) response, which persisted after resolution of clinical hepatitis and clearance of viremia. At the earliest time point studied, highly activated CTL populations were observed that temporarily failed to secrete IFN-γ, a “stunned” phenotype, from which they recovered as viremia declined. In long-term HCV-seropositive persons, CTL responses were more common in persons who had cleared viremia compared with those with persistent viremia, although the frequencies of HCV-specific CTLs were lower than those found in persons during and after resolution of acute HCV infection. These studies demonstrate a strong and persistent CTL response in resolving acute HCV infection, and provide rationale to explore immune augmentation as a therapeutic intervention in chronic HCV infection.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0122232 ◽  
Author(s):  
Behzad Hajarizadeh ◽  
Bart Grady ◽  
Kimberly Page ◽  
Arthur Y. Kim ◽  
Barbara H. McGovern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document