scholarly journals Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4+ T Cells

2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Deanna A. Kulpa ◽  
Aarthi Talla ◽  
Jessica H. Brehm ◽  
Susan Pereira Ribeiro ◽  
Sally Yuan ◽  
...  

ABSTRACT During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1446
Author(s):  
Oscar J. Cordero ◽  
Carlos Rafael-Vidal ◽  
Rubén Varela-Calviño ◽  
Cristina Calviño-Sampedro ◽  
Beatriz Malvar-Fernández ◽  
...  

Immune system CD4 T-cells with high cell-surface CD26 expression show anti-tumoral properties. When engineered with a chimeric antigen receptor (CAR), they incite strong responses against solid cancers. This subset was originally associated to human CD4 T helper cells bearing the CD45R0 effector/memory phenotype and later to Th17 cells. CD26 is also found in soluble form (sCD26) in several biological fluids, and its serum levels correlate with specific T cell subsets. However, the relationship between glycoprotein sCD26 and its dipeptidyl peptidase 4 (DPP4) enzymatic activity, and cell-surface CD26 expression is not well understood. We have studied ex vivo cell-surface CD26 and in vitro surface and intracellular CD26 expression and secretome’s sCD26 in cultured CD4 T cells under different polarization conditions. We show that most human CD26negative CD4 T cells in circulating lymphocytes are central memory (TCM) cells while CD26high expression is present in effector Th1, Th2, Th17, and TEM (effector memory) cells. However, there are significant percentages of Th1, Th2, Th17, and Th22 CD26 negative cells. This information may help to refine the research on CAR-Ts. The cell surface CD45R0 and CD26 levels in the different T helper subsets after in vitro polarization resemble those found ex vivo. In the secretomes of these cultures there was a significant amount of sCD26. However, in all polarizations, including Th1, the levels of sCD26 were lower (although not significantly) compared to the Th0 condition (activation without polarization). These differences could have an impact on the various physiological functions proposed for sCD26/DPP4.


2020 ◽  
Vol 12 (528) ◽  
pp. eaax6795 ◽  
Author(s):  
Kyungyoon J. Kwon ◽  
Andrew E. Timmons ◽  
Srona Sengupta ◽  
Francesco R. Simonetti ◽  
Hao Zhang ◽  
...  

The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1–infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1–infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Abstract Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


2008 ◽  
Vol 76 (5) ◽  
pp. 1908-1919 ◽  
Author(s):  
Sebastian Rausch ◽  
Jochen Huehn ◽  
Dennis Kirchhoff ◽  
Justyna Rzepecka ◽  
Corinna Schnoeller ◽  
...  

ABSTRACT Parasitic nematodes typically modulate T-cell reactivity, primarily during the chronic phase of infection. We analyzed the role of CD4-positive (CD4+) T effector (Teff) cells and regulatory T (Treg) cells derived from mice chronically infected with the intestinal nematode Heligmosomoides polygyrus. Different CD4+ T-cell subsets were transferred into naïve recipients that were subsequently infected with H. polygyrus. Adoptive transfer of conventional Teff cells conferred protection and led to a significant decrease in the worm burdens of H. polygyrus-infected recipients. Roughly 0.2% of the CD4+ T cells were H. polygyrus specific based on expression of CD154, and cells producing interleukin 4 (IL-4) and IL-13 were highly enriched within the CD154+ population. In contrast, adoptive transfer of Treg cells, characterized by the markers CD25 and CD103 and the transcription factor Foxp3, had no effect on the worm burdens of recipients. Further analysis showed that soon after infection, the number of Foxp3+ Treg cells temporarily increased in the inflamed tissue while effector/memory-like CD103+ Foxp+ Treg cells systemically increased in the draining lymph nodes and spleen. In addition, Treg cells represented a potential source of IL-10 and reduced the expression of IL-4. Finally, under in vitro conditions, Treg cells from infected mice were more potent suppressors than cells derived from naïve mice. In conclusion, our data indicate that small numbers of Teff cells have the ability to promote host protective immune responses, even in the presence of Treg cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1071-1071
Author(s):  
Melody M. Smith ◽  
Cynthia R. Giver ◽  
Edmund K. Waller ◽  
Christopher R. Flowers

Abstract Ex vivo modification of donor lymphocytes with purine analogs (mDL) may help to minimize graft versus host disease (GvHD) while providing beneficial graft versus leukemia (GvL) effects. In a murine model system, we have shown that allogeneic donor splenocytes, treated with fludarabine ex vivo have significantly reduced GvHD activity when transferred to irradiated recipient mice, and retain anti-viral and GvL activities (Giver, 2003). This effect appears to be mediated by relative depletion of donor CD4 CD44low, “naive” T-cells. As a first step toward developing mDL for use in patients, we sought to evaluate the effects of ex vivo fludarabine exposure on human T-cell subsets, and to determine the minimum dose of fludarabine required to achieve this effect. Methods: Peripheral blood mononuclear cell samples from 6 healthy volunteers were evaluated at 0, 24, 48, and 72 hour time points after ex vivo incubation in varying dosages of fludarabine: 2, 5, and 10(n=3) mcg/ml. Fludarabine incubated samples were compared to samples that received no fludarabine (untreated). The total viable cell number was determined and the fractions and absolute numbers of viable CD4 and CD8 naïve and memory T-cells were determined using flow cytometry after incubation with 7-AAD (dead cell stain), CD4, CD8, CD45RA, CD62L, and CCR7 antibodies, and measuring the total viable cells/ml. Results: The numbers of viable CD4 and CD8 T-cells remained relatively stable in control cultures. Without fludarabine, the average viability at 72 hr of naive and memory T-cells were 92% and 77% for CD4 and 86% and 63% for CD 8 (Fig. 1A). Naive CD4 T-cells were more sensitive to fludarabine-induced death than memory CD4 cells. At 72 hr, the average viability of fludarabine-treated naive CD4 T-cells was 33% at 2 mcg/ml (8.2X the reduction observed in untreated cells) and 30% at 5 mcg/ml, while memory CD4 T-cells averaged 47% viability at 2 mcg/ml (2.3X the reduction observed in untreated cells) (Fig. 1B) and 38% at 5 mcg/ml. The average viability of naive CD8 T-cells at 72 hr was 27% at 2 mcg/ml and 20% at 5 mcg/ml, while memory CD8 T-cell viability was 22% at 2 mcg/ml and 17% at 5 mcg/ml. Analyses on central memory, effector memory, and Temra T-cells, and B-cell and dendritic cell subsets are ongoing. The 5 and 10 mcg/ml doses also yielded similar results in 3 initial subjects, suggesting that 2 mcg/ml or a lower dose of fludarabine is sufficient to achieve relative depletion of the naive T-cell subset. Conclusions: Future work will determine the minimal dose of fludarabine to achieve this effect, test the feasibility of using ex vivo nucleoside analog incubation to reduce alloreactivity in samples from patient/donor pairs, and determine the maximum tolerated dose of mDL in a phase 1 clinical trial with patients at high risk for relapse and infectious complications following allogeneic transplantation. Figure Figure


2002 ◽  
Vol 70 (3) ◽  
pp. 1168-1174 ◽  
Author(s):  
Burkhard J. Manfras ◽  
Stefan Reuter ◽  
Thomas Wendland ◽  
Peter Kern

ABSTRACT Alveolar echinococcosis (AE) in humans is a chronic disease characterized by slowly expanding liver lesions. Cellular immunity restricts the spreading of the extracellular pathogen, but functional contributions of CD4+ and CD8+ T cells are not defined. Here we studied ex vivo the phenotype and function of circulating T-cell subsets in AE patients by means of flow cytometry, T-cell receptor spectratyping, and lymphocyte proliferation. AE patients with parasitic lesions displayed a significant increase of activation of predominantly CD8+ T cells compared to healthy controls and AE patients without lesions. In vitro, proliferative T-cell responses to polyclonal stimulation with recall antigens and Echinococcus multilocularis vesicular fluid antigen were sustained during chronic persisting infection in all AE patients. Only in AE patients with parasitic lesions did T-cell receptor spectratyping reveal increased oligoclonality of CD8+ but not CD4+ T cells, suggesting a persistent antigenic drive for CD8+ T cells with subsequent proliferation of selected clonotypes. Thus, our data provide strong evidence for an active role of CD8+ T cells in AE.


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6351-6360 ◽  
Author(s):  
Jorge R. Almeida ◽  
Delphine Sauce ◽  
David A. Price ◽  
Laura Papagno ◽  
So Youn Shin ◽  
...  

Abstract CD8+ T cells are major players in the immune response against HIV. However, recent failures in the development of T cell–based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell–mediated efficacy. CD8+ T cells from HIV-1–infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8+ T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8+ T cells from infected donors. We report that attributes of CD8+ T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8+ T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8+ T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-Liang Guo ◽  
Jin-Fang Zhao ◽  
Lin Gao ◽  
Hui-Huang Huang ◽  
Ji-Yuan Zhang ◽  
...  

Exhaustion of HIV-1-specific CD8+ T cells prevents optimal control of HIV-1 infection. Identifying unconventional CD8+ T cell subsets to effectively control HIV-1 replication is vital. In this study, the role of CD11c+ CD8+ T cells during HIV-1 infection was evaluated. The frequencies of CD11c+ CD8+ T cells significantly increased and were negatively correlated with viral load in HIV-1-infected treatment-naïve patients. HIV-1-specific cells were enriched more in CD11c+ CD8+ T cells than in CD11c- CD8+ T cells, which could be induced by HIV-1-derived overlapping peptides, marking an HIV-1-specific CD8+ T cell population. This subset expressed higher levels of activating markers (CD38 and HLA-DR), cytotoxic markers (granzyme B, perforin, and CD107a), and cytokines (IL-2 and TNF-α), with lower levels of PD-1 compared to the CD11c- CD8+ T cell subset. In vitro analysis verified that CD11c+ CD8+ T cells displayed a stronger HIV-1-specific killing capacity than the CD11c- counterparts. These findings indicate that CD11c+ CD8+ T cells have potent immunotherapeutic efficacy in controlling HIV-1 infection.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 450-450
Author(s):  
Rozemarijn S. van Rijn ◽  
Elles R. Simonetti ◽  
Gert Storm ◽  
Mark Bonyhadi ◽  
Anton Hagenbeek ◽  
...  

Abstract T cells retrovirally modified to express therapeutic genes encoding cytokines, exogenous TCRs or suicide molecules represent a novel class of immune therapeutics of great potency. However, recent clinical trials using retrovirally-modified T cells have indicated that T cells exhibit a diminished reactivity upon ex vivo manipulation. In addition, virus-specific memory T cells seem to be lost during gene transfer. In a BNML rat model we have shown that the culture procedure is one of the critical parameters. To preserve T cell reactivity, reliable models are required which permit readout of human T cell activity. We recently developed a huPBMC-RAG2−/−γc−/− mouse model for xenogeneic graft-versus-host disease (xGVHD), in which iv injection of 15 x 106 human T cells into RAG2−/−γc−/− mice consistently leads to high level engraftment and lethal xGVHD within 3 weeks in 80% of mice (van Rijn et al, Blood 2003). We have now used this model to analyze in vivo functionality of human T cells following different ex vivo culture procedures. For this, we cultured human T cells for 7 days with either of the two currently available clinically applicable stimulation conditions: 1) via CD3 and 2) via CD3/CD28. In addition, we included CD3/CD28/4-1BB stimulation to explore the effect of extensive costimulation. Mice were injected with escalating doses T cells. HuCD45+ cells in peripheral blood were measured by FACS. Lethal xGVHD occurred at only 6 times (90.106) the dose of fresh cells for CD3-stimulated T cells and 3 times for CD3/28- or CD3/28/4-1BB-stimulated cells. About 20% of surviving mice developed chronic xGVHD, independent of culture method. While lethal xGVHD was always associated with very high levels of engraftment (up to 95%) engraftment levels in chronic mice ranged from 1–75%. To compare the impact of the different culture conditions on in vivo T cell function, we analyzed engraftment potential. The fraction of huCD45+ cells was plotted against the time and the areas under the curves were compared. Based on a total of 68 mice, statistical analysis showed a 2-fold improvement of engraftment potential for C28-costimulated human T cells compared to CD3-stimulated cells (P<0.0001). Additional ligation of 4-1BB did not increase engraftment potential. In addition, different T cell subsets (naïve, memory, effector) were monitored based on the combined expression of CD45RA, CD27 and CCR7. For all primary T cells and variably cultured T cells, a strikingly similar pattern was observed in vivo. After 3 weeks mainly effector and memory effector T cells (both CD4+ and CD8+) could be detected, suggesting a (xeno-)antigen-driven survival and expansion. This was a very consistent observation independent of donor, culture condition, engraftment level or severity of disease. In conclusion, in vitro costimulation preserves in vivo functionality of human T cells and should therefore be included in future clinical protocols for ex vivo manipulation of T cells. These data show the feasibility to use the huPBMC-RAG2−/−γc−/− model for in vivo evaluation of in vitro effects on human T cells. This model is the most sensitive to date for in vivo evaluation of human T cells and will be a promising new tool for the study of human T cells in, for instance, autoimmune disease, cancer and infectious diseases like AIDS.


Sign in / Sign up

Export Citation Format

Share Document