scholarly journals The Influenza Virus M2 Protein Cytoplasmic Tail Interacts with the M1 Protein and Influences Virus Assembly at the Site of Virus Budding

2008 ◽  
Vol 82 (20) ◽  
pp. 10059-10070 ◽  
Author(s):  
Benjamin J. Chen ◽  
George P. Leser ◽  
David Jackson ◽  
Robert A. Lamb

ABSTRACT The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur.

2007 ◽  
Vol 82 (2) ◽  
pp. 1059-1063 ◽  
Author(s):  
Wai-Hong Wu ◽  
Andrew Pekosz

ABSTRACT A carboxy-terminal epitope tag introduced into the coding region of the A/WSN/33 M2 protein resulted in a recombinant virus (rWSN M2myc) which replicated to titers similar to those of the parental virus (rWSN) in MDCK cells. The rWSN M2myc virus was attenuated in its ability to induce mortality and weight loss after the intranasal inoculation of BALB/c mice, indicating that the M2 cytoplasmic tail plays a role in virus virulence. Mice infected with rWSN M2myc were completely protected from subsequent challenge with rWSN, suggesting that epitope tagging of the M2 protein may be a useful way of attenuating influenza A virus strains.


2006 ◽  
Vol 80 (16) ◽  
pp. 8178-8189 ◽  
Author(s):  
Matthew F. McCown ◽  
Andrew Pekosz

ABSTRACT The cytoplasmic tail of the influenza A virus M2 protein is highly conserved among influenza A virus isolates. The cytoplasmic tail appears to be dispensable with respect to the ion channel activity associated with the protein but important for virus morphology and the production of infectious virus particles. Using reverse genetics and transcomplementation assays, we demonstrate that the M2 protein cytoplasmic tail is a crucial mediator of infectious virus production. Truncations of the M2 cytoplasmic tail result in a drastic decrease in infectious virus titers, a reduction in the amount of packaged viral RNA, a decrease in budding events, and a reduction in budding efficiency. The M1 protein binds to the M2 cytoplasmic tail, but the M1 binding site is distinct from the sequences that affect infectious virus particle formation. Influenza A virus strains A/Udorn/72 and A/WSN/33 differ in their requirements for M2 cytoplasmic tail sequences, and this requirement maps to the M1 protein. We conclude that the M2 protein is required for the formation of infectious virus particles, implicating the protein as important for influenza A virus assembly in addition to its well-documented role during virus entry and uncoating.


2010 ◽  
Vol 84 (17) ◽  
pp. 8765-8776 ◽  
Author(s):  
Michael L. Grantham ◽  
Shaun M. Stewart ◽  
Erin N. Lalime ◽  
Andrew Pekosz

ABSTRACT The cytoplasmic tail of the influenza A virus M2 protein is required for the production of infectious virions. In this study, critical residues in the M2 cytoplasmic tail were identified by single-alanine scanning mutagenesis. The tyrosine residue at position 76, which is conserved in >99% of influenza virus strains sequenced to date, was identified as being critical for the formation of infectious virus particles using both reverse genetics and a protein trans-complementation assay. Recombinant viruses encoding M2 with the Y76A mutation demonstrated replication defects in MDCK cells as well as in primary differentiated airway epithelial cell cultures, defects in the formation of filamentous virus particles, and reduced packaging of nucleoprotein into virus particles. These defects could all be overcome by a mutation of serine to tyrosine at position 71 of the M2 cytoplasmic tail, which emerged after blind passage of viruses containing the Y76A mutation. These data confirm and extend our understanding of the significance of the M2 protein for infectious virus particle assembly.


2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Hsuan Liu ◽  
Michael L. Grantham ◽  
Andrew Pekosz

ABSTRACTThe influenza A virus M1 and M2 proteins play important roles in virus assembly and in the morphology of virus particles. Mutations in the distal cytoplasmic tail region of M2, and in particular a tyrosine-to-alanine mutation at residue 76 (Y76A), were essential for infectious virus production and filament formation while having limited effects on total virus particle budding. Using a novel selection method, mutations at seven different M1 amino acids (residue 73, 94, 135, 136, or 138 or a double mutation, 93/244) that are not found in circulating influenza virus strains or have not been previously identified to play a role in influenza A virus assembly were found to complement the lethal M2Y76A mutation. These M1 suppressor mutations restored infectious virus production in the presence of M2Y76A and mediated increased budding and filament formation even in the absence of M2. However, the efficiency of infectious virus replication was still dependent on the presence of the distal region of the M2 cytoplasmic tail. The data suggest that influenza A virus budding and genome incorporation can occur independently and provide further support for complementary roles of the M1 and M2 proteins in virus assembly.IMPORTANCEInfluenza virus particle assembly involves the careful coordination of various viral and host factors to optimally produce infectious virus particles. We have previously identified a mutation at position 76 of the influenza A virus M2 protein that drastically reduces infectious virus production and filament formation with minimal effects on virus budding. In this work, we identified suppressor mutations in the M1 protein which complement this lethal M2 mutation by increasing the efficiency with which virus particles bud from infected cells and restoring filament formation at the infected-cell surface. M2 distal cytoplasmic domain sequences were still required for optimal infectivity. This indicates that M1 and M2 can functionally replace each other in some, but not all, aspects of virus particle assembly.


2005 ◽  
Vol 79 (21) ◽  
pp. 13673-13684 ◽  
Author(s):  
Benjamin J. Chen ◽  
Makoto Takeda ◽  
Robert A. Lamb

ABSTRACT The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.


2006 ◽  
Vol 80 (11) ◽  
pp. 5233-5240 ◽  
Author(s):  
Kiyoko Iwatsuki-Horimoto ◽  
Taisuke Horimoto ◽  
Takeshi Noda ◽  
Maki Kiso ◽  
Junko Maeda ◽  
...  

ABSTRACT The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.


Virology ◽  
1995 ◽  
Vol 212 (2) ◽  
pp. 411-421 ◽  
Author(s):  
Patsy G. Hughey ◽  
Paul C. Roberts ◽  
Leslie J. Holsinger ◽  
Suzanne L. Zebedee ◽  
Robert A. Lamb ◽  
...  

2007 ◽  
Vol 402 (2) ◽  
pp. 311-319 ◽  
Author(s):  
Emmanuel Collec ◽  
Wassim El nemer ◽  
Emilie Gauthier ◽  
Pierre Gane ◽  
Marie-Christine Lecomte ◽  
...  

Lu (Lutheran) blood group and BCAM (basal cell adhesion molecule) antigens both reside on two gp (glycoprotein) isoforms, Lu and Lu(v13), that differ by the size of their cytoplasmic tail. They are receptors of laminin-10/11 and are expressed in RBCs (red blood cells), epithelial cells of multiple tissues and vascular endothelial cells. To gain more insights into the biological function of Lu/BCAM gps, we looked for potential partners of their cytoplasmic tail. We isolated Ubc9 (ubiquitin-conjugating enzyme 9) protein by screening a human kidney library using the yeast two-hybrid system. Lu/Ubc9 interaction was validated by GST (glutathione S-transferase) pull-down and co-immunoprecipitation experiments. Endogenous Ubc9 formed a complex with endogenous or recombinant Lu gp in A498 and MDCK (Madin–Darby canine kidney) epithelial cells respectively. Replacement of Lys585 by alanine in the Lu gp abolished in vitro and ex vivo interactions of Lu gp with Ubc9 protein. Lu K585A mutant transfected in MDCK cells exhibited a normal basolateral membrane expression but was overexpressed at the surface of polarized MDCK cells as compared with wild-type Lu. Pulse–chase experiments showed extended half-life of Lu K585A gp at the plasma membrane, suggesting an impaired endocytosis of this mutant leading to protein accumulation at the membrane. Furthermore, we showed that the ability of MDCK-Lu K585A cells to spread on immobilized laminin was dramatically decreased. Our results support a physiological role for the direct interaction between Lu gp and Ubc9 protein and reveal a role for this enzyme in regulating the stability of Lu gp at the cell membrane.


2019 ◽  
Vol 47 (06) ◽  
pp. 1307-1324 ◽  
Author(s):  
Jang-Gi Choi ◽  
Heeeun Lee ◽  
Young Soo Kim ◽  
Youn-Hwan Hwang ◽  
You-Chang Oh ◽  
...  

Aloe vera ethanol extract (AVE) reportedly has significant anti-influenza virus activity, but its underlying mechanisms of action and constituents have not yet been completely elucidated. Previously, we have confirmed that AVE treatment significantly reduces the viral replication of green fluorescent protein-labeled influenza A virus in Madin-Darby canine kidney (MDCK) cells. In addition, post-treatment with AVE inhibited viral matrix protein 1 (M1), matrix protein 2 (M2), and hemagglutinin (HA) mRNA synthesis and viral protein (M1, M2, and HA) expressions. In this study, we demonstrated that AVE inhibited autophagy induced by influenza A virus in MDCK cells and also identified quercetin, catechin hydrate, and kaempferol as the active antiviral components of AVE. We also found that post-treatment with quercetin, catechin hydrate, and kaempferol markedly inhibited M2 viral mRNA synthesis and M2 protein expression. A docking simulation suggested that the binding affinity of quercetin, catechin hydrate, and kaempferol for the M2 protein may be higher than that of known M2 protein inhibitors. Thus, the inhibition of autophagy induced by influenza virus may explain the antiviral activity of AVE against H1N1 or H3N2. Aloe vera extract and its constituents may, therefore, be potentially useful for the development of anti-influenza agents.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Nicholas Wohlgemuth ◽  
Andrew P. Lane ◽  
Andrew Pekosz

ABSTRACTThe influenza A virus (IAV) M2 protein is a multifunctional protein with critical roles in virion entry, assembly, and budding. M2 is targeted to the apical plasma membrane of polarized epithelial cells, and the interaction of the viral proteins M2, M1, HA, and NA near glycolipid rafts in the apical plasma membrane is hypothesized to coordinate the assembly of infectious virus particles. To determine the role of M2 protein apical targeting in IAV replication, a panel of M2 proteins with basolateral plasma membrane (M2-Baso) or endoplasmic reticulum (M2-ER) targeting sequences was generated. MDCK II cells stably expressing M2-Baso, but not M2-ER, complemented the replication of M2-stop viruses. However, in primary human nasal epithelial cell (hNEC) cultures, viruses encoding M2-Baso and M2-ER replicated to negligible titers compared to those of wild-type virus. M2-Baso replication was negatively correlated with cell polarization. These results demonstrate that M2 apical targeting is essential for IAV replication: targeting M2 to the ER results in a strong, cell type-independent inhibition of virus replication, and targeting M2 to the basolateral membrane has greater effects in hNECs than in MDCK cells.IMPORTANCEInfluenza A virus assembly and particle release occur at the apical membrane of polarized epithelial cells. The integral membrane proteins encoded by the virus, HA, NA, and M2, are all targeted to the apical membrane and believed to recruit the other structural proteins to sites of virus assembly. By targeting M2 to the basolateral or endoplasmic reticulum membranes, influenza A virus replication was significantly reduced. Basolateral targeting of M2 reduced the infectious virus titers with minimal effects on virus particle release, while targeting to the endoplasmic reticulum resulted in reduced infectious and total virus particle release. Therefore, altering the expression and the intracellular targeting of M2 has major effects on virus replication.


Sign in / Sign up

Export Citation Format

Share Document