scholarly journals Mutational Analysis Reveals a Noncontractile but Interactive Role of Actin and Profilin in Viral RNA-Dependent RNA Synthesis

2009 ◽  
Vol 83 (21) ◽  
pp. 10869-10876 ◽  
Author(s):  
Mary Harpen ◽  
Tiasha Barik ◽  
Alla Musiyenko ◽  
Sailen Barik

ABSTRACT As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.

2015 ◽  
Vol 89 (21) ◽  
pp. 11002-11010 ◽  
Author(s):  
Adrian Pickar ◽  
Andrew Elson ◽  
Yang Yang ◽  
Pei Xu ◽  
Ming Luo ◽  
...  

ABSTRACTThe mumps virus (MuV) genome encodes a phosphoprotein (P) that is important for viral RNA synthesis. P forms the viral RNA-dependent RNA polymerase with the large protein (L). P also interacts with the viral nucleoprotein (NP) and self-associates to form a homotetramer. The P protein consists of three domains, the N-terminal domain (PN), the oligomerization domain (PO), and the C-terminal domain (PC). While PNis known to relax the NP-bound RNA genome, the roles of POand PCare not clear. In this study, we investigated the roles of POand PCin viral RNA synthesis using mutational analysis and a minigenome system. We found that PNand PCfunctions can betrans-complemented. However, this complementation requires PO, indicating that POis essential for P function. Using thistrans-complementation system, we found that P forms parallel dimers (PNto PNand PCto PC). Furthermore, we found that residues R231, K238, K253, and K260 in POare critical for P's functions. We identified PCto be the domain that interacts with L. These results provide structure-function insights into the role of MuV P.IMPORTANCEMuV, a paramyxovirus, is an important human pathogen. The P protein of MuV is critical for viral RNA synthesis. In this work, we established a novel minigenome system that allows the domains of P to be complemented intrans. Using this system, we confirmed that MuV P forms parallel dimers. An understanding of viral RNA synthesis will allow the design of better vaccines and the development of antivirals.


2015 ◽  
Vol 89 (9) ◽  
pp. 5148-5153 ◽  
Author(s):  
Priya Luthra ◽  
David S. Jordan ◽  
Daisy W. Leung ◽  
Gaya K. Amarasinghe ◽  
Christopher F. Basler

Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.


1991 ◽  
Vol 11 (9) ◽  
pp. 4356-4362 ◽  
Author(s):  
M N Kanaan ◽  
G A Marzluf

cys-3, the major sulfur regulatory gene of Neurospora crassa, activates the expression of a set of unlinked structural genes which encode sulfur catabolic-related enzymes during conditions of sulfur limitation. The cys-3 gene encodes a regulatory protein of 236 amino acid residues with a leucine zipper and an upstream basic region (the b-zip region) which together may constitute a DNA-binding domain. The b-zip region was expressed in Escherichia coli to examine its DNA-binding activity. The b-zip domain protein binds to the promoter region of the cys-3 gene itself and of cys-14, the sulfate permease II structural gene. A series of CYS3 mutant proteins obtained by site-directed mutagenesis were expressed and tested for function, dimer formation, and DNA-binding activity. The results demonstrate that the b-zip region of cys-3 is critical for both its function in vivo and specific DNA-binding in vitro.


2001 ◽  
Vol 75 (8) ◽  
pp. 3802-3810 ◽  
Author(s):  
Atsushi Kato ◽  
Yukano Ohnishi ◽  
Masayoshi Kohase ◽  
Sakura Saito ◽  
Masato Tashiro ◽  
...  

ABSTRACT An open reading frame (ORF) overlapping the amino-terminal portion of the Sendai virus (SeV) P ORF in the +1 frame produces a nested set of carboxy-coterminal proteins, C′, C, Y1, and Y2, which are referred to collectively as the C proteins. The C proteins are extremely versatile triple-role players; they counteract the antiviral action of interferons (IFNs), inhibit viral RNA synthesis, and are involved in virus assembly. In this study, we established HeLa cell lines stably expressing the C, Y1, and Y2 proteins individually and examined the capacities of these cells to circumvent the antiviral action of alpha/beta IFN (IFN-α/β) and IFN-γ and to inhibit viral transcription. The assay protocols included monitoring of IFN-α/β-mediated signaling by interferon-stimulated response element-driven reporter gene expression and of the antiviral state induced by IFN-α/β and IFN-γ and measurement of reporter gene expression from an SeV minigenome, as well as quantification of SeV primary transcripts. When necessary, the activities measured were carefully normalized to the expression levels of the respective C proteins in cells. The data obtained clearly indicate that the smallest protein, Y2, was as active as the C and Y1 proteins in both counteracting the antiviral action of IFNs and inhibiting viral transcription. The data further show that intracellular transexpression of either C, Y1, or Y2 rendered HeLa cells moderately or only poorly permissive for not only wild-type SeV but also 4C(−) SeV, which expressed none of the four C proteins. On the basis of these findings, the roles of SeV C proteins in the natural life cycle are discussed.


2021 ◽  
Author(s):  
Yanwei Zhang ◽  
Yong-An Zhang ◽  
Jiagang Tu

Snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus isolated from diseased hybrid snakehead fish, has caused great economic losses in snakehead fish culture in China. The large (L) protein, together with its cofactor phosphoprotein (P), forms a P/L polymerase complex and catalyzes the transcription and replication of viral genomic RNA. In this study, the cellular heat shock protein 90 (Hsp90) was identified as an interacting partner of SHVV L protein. The Hsp90 activity was required for the stability of SHVV L because Hsp90 dysfunction by using its inhibitor destabilized SHVV L and thereby suppressed SHVV replication via reducing viral RNA synthesis. SHVV L expressed alone was detected mainly in the insoluble fraction and the insoluble L was degraded by Hsp90 dysfunction through the proteasomal pathway, while the presence of SHVV P promoted the solubility of SHVV L and the soluble L was degraded by Hsp90 dysfunction through the autophagy pathway. Collectively, our data suggest that Hsp90 contributes to the maturation of SHVV L and ensure the effective replication of SHVV, which exhibits an important anti-SHVV target. This study will help understand the role of Hsp90 in stabilizing the L protein and regulating the replication of negative-stranded RNA viruses. Importance It has long been proposed that cellular proteins are involved in viral RNA synthesis via interacting with the viral polymerase protein. This study focused on identifying cellular proteins interacting with the SHVV L protein, studying the effects of their interactions on SHVV replication, and revealing the underlying mechanisms. We identified Hsp90 as an interacting partner of SHVV L and found that Hsp90 activity was required for SHVV replication. Hsp90 functioned in maintaining the stability of SHVV L. Inhibition of Hsp90 activity with its inhibitor degraded SHVV L through different pathways based on the solubility of SHVV L due to the presence or absence of SHVV P. Our data provide important insights into the role of Hsp90 in SHVV polymerase maturation, which will help understand the polymerase function of negative-stranded RNA viruses.


2003 ◽  
Vol 77 (9) ◽  
pp. 5136-5144 ◽  
Author(s):  
B. Joan Morasco ◽  
Nidhi Sharma ◽  
Jessica Parilla ◽  
James B. Flanegan

ABSTRACT The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3′ poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.


2015 ◽  
Vol 89 (11) ◽  
pp. 6067-6079 ◽  
Author(s):  
GuanQun Liu ◽  
Hong-Su Park ◽  
Hyun-Mi Pyo ◽  
Qiang Liu ◽  
Yan Zhou

ABSTRACTRetinoic acid-inducible gene I (RIG-I) is an important innate immune sensor that recognizes viral RNA in the cytoplasm. Its nonself recognition largely depends on the unique RNA structures imposed by viral RNA. The panhandle structure residing in the influenza A virus (IAV) genome, whose primary function is to serve as the viral promoter for transcription and replication, has been proposed to be a RIG-I agonist. However, this has never been proved experimentally. Here, we employed multiple approaches to determine if the IAV panhandle structure is directly involved in RIG-I activation and type I interferon (IFN) induction. First, in porcine alveolar macrophages, we demonstrated that the viral genomic coding region is dispensable for RIG-I-dependent IFN induction. Second, usingin vitro-synthesized hairpin RNA, we showed that the IAV panhandle structure could directly bind to RIG-I and stimulate IFN production. Furthermore, we investigated the contributions of the wobble base pairs, mismatch, and unpaired nucleotides within the wild-type panhandle structure to RIG-I activation. Elimination of these destabilizing elements within the panhandle structure promoted RIG-I activation and IFN induction. Given the function of the panhandle structure as the viral promoter, we further monitored the promoter activity of these panhandle variants and found that viral replication was moderately affected, whereas viral transcription was impaired dramatically. In all, our results indicate that the IAV panhandle promoter region adopts a nucleotide composition that is optimal for balanced viral RNA synthesis and suboptimal for RIG-I activation.IMPORTANCEThe IAV genomic panhandle structure has been proposed to be an RIG-I agonist due to its partial complementarity; however, this has not been experimentally confirmed. Here, we provide direct evidence that the IAV panhandle structure is competent in, and sufficient for, RIG-I activation and IFN induction. By constructing panhandle variants with increased complementarity, we demonstrated that the wild-type panhandle structure could be modified to enhance RIG-I activation and IFN induction. These panhandle variants posed moderate influence on viral replication but dramatic impairment of viral transcription. These results indicate that the IAV panhandle promoter region adopts a nucleotide composition to achieve optimal balance of viral RNA synthesis and suboptimal RIG-I activation. Our results highlight the multifunctional role of the IAV panhandle promoter region in the virus life cycle and offer novel insights into the development of antiviral agents aiming to boost RIG-I signaling or virus attenuation by manipulating this conserved region.


2005 ◽  
Vol 79 (17) ◽  
pp. 11311-11322 ◽  
Author(s):  
Vanessa M. Cowton ◽  
Rachel Fearns

ABSTRACT The 3′-terminal end of the respiratory syncytial virus genomic RNA contains a 44-nucleotide leader (Le) region adjoining the gene start signal of the first gene. Previous mapping studies demonstrated that there is a promoter located at the 3′ end of Le, which can signal initiation of antigenome synthesis. The aim of this study was to investigate the role of the 3′ terminus of the RNA template in (i) promoter recognition and (ii) determining the initiation site for antigenome synthesis. A panel of minigenomes containing additional sequence at the 3′ end of the Le were analyzed for their ability to direct antigenome and mRNA synthesis. Minigenomes containing heterologous extensions of 6 nucleotides or more were unable to support efficient RNA synthesis. However, the activity of a minigenome with a 56-nucleotide extension could be restored by insertion of Le nucleotides 1 to 11 or 1 to 13 at the 3′ end, indicating that these nucleotides, in conjunction with the 3′ terminus, are sufficient to recruit polymerase to the template. Northern blot and 5′ rapid amplification of cDNA ends analysis of antigenome RNA indicated that antigenome initiation occurred at the first position of Le, irrespective of the terminal extension. This finding demonstrates that the 3′ terminus of the RNA is not necessary for determining the antigenome initiation site. Data are presented which suggest that following recruitment to a promoter at the 3′ end of Le, the polymerase is able to scan and respond to a promoter signal embedded within the RNA template.


2015 ◽  
Vol 89 (7) ◽  
pp. 3484-3496 ◽  
Author(s):  
Marie Galloux ◽  
Gaëlle Gabiane ◽  
Julien Sourimant ◽  
Charles-Adrien Richard ◽  
Patrick England ◽  
...  

ABSTRACTThe RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N, thus forming a helical nucleocapsid. Polymerization of N along the genomic and antigenomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy withParamyxoviridaeandRhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperone protein, forming a soluble complex with the RNA-free form of N (N0-P complex). Here, we have engineered a mutant form of N that is monomeric, is unable to bind RNA, still interacts with P, and could thus mimic the N0monomer. We used this N mutant, designated Nmono, as a substitute for N0in order to characterize the P regions involved in the N0-P complex formation. Using a series of P fragments, we determined by glutathioneS-transferase (GST) pulldown assays that the N and C termini of P are able to interact with Nmono. We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and Nmonoin vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N0-P interaction could constitute a potential antiviral strategy.IMPORTANCERespiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment is available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a nonassembled, RNA-free protein (N0) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus.


Sign in / Sign up

Export Citation Format

Share Document