scholarly journals Participation of Rab5, an Early Endosome Protein, in Hepatitis C Virus RNA Replication Machinery

2007 ◽  
Vol 81 (9) ◽  
pp. 4551-4563 ◽  
Author(s):  
Michelle Stone ◽  
Shuaizheng Jia ◽  
Won Do Heo ◽  
Tobias Meyer ◽  
Kouacou V. Konan

ABSTRACT Like most positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its genome on the surface of rearranged membranes. We have shown previously that HCV NS4AB, but not the product NS4B, inhibits endoplasmic reticulum (ER)-to-Golgi protein traffic (K. V. Konan, T. H. Giddings, Jr., M. Ikeda, K. Li, S. M. Lemon, and K. Kirkegaard, J. Virol. 77:7843-7855). However, both NS4AB and NS4B can induce “membranous web” formation, first reported by Egger et al. (D. B Egger, R. Gosert, L. Bianchi, H. E. Blum, D. Moradpour, and K. Bienz, J. Virol. 76:5974-5984), which is also observed in HCV-infected cells (Y. Rouille, F. Helle, D. Delgrange, P. Roingeard, C. Voisset, E. Blanchard, S. Belouzard, J. McKeating, A. H. Patel, G. Maertens, T. Wakita, C. Wychowski, and J. Dubuisson, J. Virol. 80:2832-2841) and cells that bear a subgenomic NS5A-green fluorescent protein (GFP) replicon (D. Moradpour, M. J. Evans, R. Gosert, Z. Yuan, H. E. Blum, S. P. Goff, B. D. Lindenbach, and C. M. Rice, J. Virol. 78:7400-7409). To determine the intracellular origin of the web, we examined NS4B colocalization with endogenous cellular markers in the context of the full-length or subgenomic replicon. We found that, in addition to ER markers, early endosome (EE) proteins, including Rab5, were associated with web-inducing protein NS4B. Furthermore, an immunoisolated fraction containing NS4B was found to contain both ER and EE proteins. Using fluorescence microscopy, we showed that wild-type and constitutively active Rab5 proteins were associated with NS4B. Interestingly, expression of dominant-negative Rab5 resulted in significant loss of GFP fluorescence in NS5A-GFP replicon cells. We also found that a small reduction in Rab5 protein expression decreased HCV RNA synthesis significantly. Furthermore, transfection of labeled Rab5 small interfering RNAs into NS5A-GFP replicon cells resulted in a significant decrease in GFP fluorescence. Finally, Rab5 protein was found to coimmunoprecipitate with HCV NS4B. These studies suggest that EE proteins, including Rab5, may play a role in HCV genome replication or web formation.

2004 ◽  
Vol 85 (7) ◽  
pp. 1867-1875 ◽  
Author(s):  
Rita Graziani ◽  
Giacomo Paonessa

An efficient model is currently used to study hepatitis C virus (HCV) replication in cell culture. It involves transfection in Huh7, a hepatoma-derived cell line, of an antibiotic (neomycin) selectable HCV subgenomic replicon encoding the non-structural (NS) proteins from NS3 to NS5B. However, strong and sustained replication is achieved only on the appearance of adaptive mutations in viral proteins. The most effective of these adaptive mutations are concentrated mainly in NS5A, not only into the original Con1 but also in the recently established HCV-BK and HCV-H77 isolate-derived replicons. This suggests that the expression of wild-type (wt) NS5A may not allow efficient HCV RNA replication in cell culture. With the use of a β-lactamase reporter gene as a marker for HCV replication and TaqMan RNA analysis, the replication of different HCV replicons in cotransfection experiments was investigated. Comparing wt with NS5A-adapted replicons, the strong evidence accumulated showed that the expression of wt NS5A was actually able to inhibit the replication of NS5A-adapted replicons. This feature was characterized as a dominant negative effect. Interestingly, an NS5B (R2884G)-adapted replicon, containing a wt NS5A, was dominant negative on an NS5A-adapted replicon but was not inhibited by the original Con1 replicon. In conclusion, these studies revealed that the original wt Con1 replicon is not only incompetent for replication in cell culture, but is also able to interfere with NS5A-adapted replicons.


2004 ◽  
Vol 78 (20) ◽  
pp. 11393-11400 ◽  
Author(s):  
Menashe Elazar ◽  
Ping Liu ◽  
Charles M. Rice ◽  
Jeffrey S. Glenn

ABSTRACT Like other positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its RNA in association with host cell cytoplasmic membranes. Because of its association with such membranes, NS4B, one of the virus's nonstructural proteins, may play an important role in this process, although the mechanistic details are not well understood. We identified a putative N-terminal amphipathic helix (AH) in NS4B that mediates membrane association. Introduction of site-directed mutations designed to disrupt the hydrophobic face of the AH abolishes the AH's ability to mediate membrane association. An AH in NS4B is conserved across HCV isolates. Completely disrupting the amphipathic nature of NS4B's N-terminal helix abolished HCV RNA replication, whereas partial disruption resulted in an intermediate level of replication. Finally, immunofluorescence studies revealed that HCV replication complex components were mislocalized in the AH-disrupted mutant. These results identify a key membrane-targeting domain which can form the basis for developing novel antiviral strategies.


2005 ◽  
Vol 79 (3) ◽  
pp. 1569-1580 ◽  
Author(s):  
Gulam Waris ◽  
James Turkson ◽  
Tarek Hassanein ◽  
Aleem Siddiqui

ABSTRACT The hepatitis C virus (HCV) causes chronic hepatitis, which often results in liver cirrhosis and hepatocellular carcinoma. We have previously shown that HCV nonstructural proteins induce activation of STAT-3 via oxidative stress and Ca2+ signaling (G. Gong, G. Waris, R. Tanveer, and A. Siddiqui, Proc. Natl. Acad. Sci. USA 98:9599-9604, 2001). In this study, we focus on the signaling pathway leading to STAT-3 activation in response to oxidative stress induced by HCV translation and replication activities. Here, we demonstrate the constitutive activation of STAT-3 in HCV replicon-expressing cells. The HCV-induced STAT-3 activation was inhibited in the presence of antioxidant (pyrrolidine dithiocarbamate) and Ca2+ chelators (BAPTA-AM and TMB-8). Previous studies have shown that maximum STAT-3 transactivation requires Ser727 phosphorylation in addition to tyrosine phosphorylation. Using a series of inhibitors and dominant negative mutants, we show that HCV-induced activation of STAT-3 is mediated by oxidative stress and influenced by the activation of cellular kinases, including p38 mitogen-activated protein kinase, JNK, JAK-2, and Src. Our results also suggest a potential role of STAT-3 in HCV RNA replication. We also observed the constitutive activation of STAT-3 in the liver biopsy of an HCV-infected patient. These studies provide an insight into the mechanisms by which HCV induces intracellular events relevant to liver pathogenesis associated with the viral infection.


2006 ◽  
Vol 80 (12) ◽  
pp. 6013-6023 ◽  
Author(s):  
Guann-Yi Yu ◽  
Ki-Jeong Lee ◽  
Lu Gao ◽  
Michael M. C. Lai

ABSTRACT Hepatitis C Virus (HCV) NS4B protein induces a specialized membrane structure which may serve as the replication platform for HCV RNA replication. In the present study, we demonstrated that NS4B has lipid modifications (palmitoylation) on two cysteine residues (cysteines 257 and 261) at the C-terminal end. Site-specific mutagenesis of these cysteine residues on individual NS4B proteins and on an HCV subgenomic replicon showed that the lipid modifications, particularly of Cys261, are important for protein-protein interaction in the formation of the HCV RNA replication complex. We further demonstrated that NS4B can undergo polymerization. The main polymerization determinants were mapped in the N-terminal cytosolic domain of NS4B protein; however, the lipid modifications on the C terminus also facilitate the polymerization process. The lipid modification and the polymerization activity could be two properties of NS4B important for its induction of the specialized membrane structure involved in viral RNA replication.


2014 ◽  
Vol 89 (4) ◽  
pp. 2052-2063 ◽  
Author(s):  
Amy L. Cherry ◽  
Caitriona A. Dennis ◽  
Andrew Baron ◽  
Leslie E. Eisele ◽  
Pia A. Thommes ◽  
...  

ABSTRACTThe RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is essential for viral genome replication. Crystal structures of the HCV RdRp reveal two C-terminal features, a β-loop and a C-terminal arm, suitably located for involvement in positioning components of the initiation complex. Here we show that these two elements intimately regulate template and nucleotide binding, initiation, and elongation. We constructed a series of β-loop and C-terminal arm mutants, which were used forin vitroanalysis of RdRpde novoinitiation and primer extension activities. All mutants showed a substantial decrease in initiation activities but a marked increase in primer extension activities, indicating an ability to form more stable elongation complexes with long primer-template RNAs. Structural studies of the mutants indicated that these enzyme properties might be attributed to an increased flexibility in the C-terminal features resulting in a more open polymerase cleft, which likely favors the elongation process but hampers the initiation steps. A UTP cocrystal structure of one mutant shows, in contrast to the wild-type protein, several alternate conformations of the substrate, confirming that even subtle changes in the C-terminal arm result in a more loosely organized active site and flexible binding modes of the nucleotide. We used a subgenomic replicon system to assess the effects of the same mutations on viral replication in cells. Even the subtlest mutations either severely impaired or completely abolished the ability of the replicon to replicate, further supporting the concept that the correct positioning of both the β-loop and C-terminal arm plays an essential role during initiation and in HCV replication in general.IMPORTANCEHCV RNA polymerase is a key target for the development of directly acting agents to cure HCV infections, which necessitates a thorough understanding of the functional roles of the various structural features of the RdRp. Here we show that even highly conservative changes, e.g., Tyr→Phe or Asp→Glu, in these seemingly peripheral structural features have profound effects on the initiation and elongation properties of the HCV polymerase.


2004 ◽  
Vol 78 (7) ◽  
pp. 3480-3488 ◽  
Author(s):  
Lu Gao ◽  
Hideki Aizaki ◽  
Jian-Wen He ◽  
Michael M. C. Lai

ABSTRACT The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 908 ◽  
Author(s):  
Chen-Jei Tai ◽  
Alagie Jassey ◽  
Ching-Hsuan Liu ◽  
Cheng-Jeng Tai ◽  
Christopher D. Richardson ◽  
...  

Hepatocellular carcinoma (HCC), including hepatitis C virus (HCV)-induced HCC, is a deadly disease highly refractory to chemotherapy, thus requiring the continuous identification of novel treatment strategies. Berberine (BBR) has been previously reported to inhibit hepatoma cell growth, but the main type of cell death elicited by BBR, and whether the alkaloid can inhibit hepatoma cells carrying HCV genomes, is unclear. Herein, we show that BBR treatment induced a biphasic cell death irrespective of the presence of HCV subgenomic replicon RNA, first triggering apoptosis that then progressed to necrosis between 24 and 48 h post-treatment. Furthermore, BBR treatment potentiated the HCV replicon-induced reactive oxygen species (ROS) production, inhibition of which with an antioxidant attenuated the cell death that was elicited by BBR in these cells. Moreover, BBR dampened the autophagic response in HCV RNA-positive or negative hepatoma cells, and pharmacological inhibition of autophagy conversely augmented the BBR-induced cell death. Finally, BBR inhibited the growth of Huh-7 cells that were persistently infected with the full-length genome HCV particles, and concomitant pharmacological inhibition of autophagy potentiated the killing of these cells by BBR. Our findings suggest that combining BBR with the inhibition of autophagy could be an attractive treatment strategy against HCC, irrespective of the presence of the HCV genome.


2011 ◽  
Vol 92 (5) ◽  
pp. 1082-1086 ◽  
Author(s):  
Udvitha Nandasoma ◽  
Christopher McCormick ◽  
Stephen Griffin ◽  
Mark Harris

RNA virus genome replication requires initiation at the precise terminus of the template RNA. To investigate the nucleotide requirements for initiation of hepatitis C virus (HCV) positive-strand RNA replication, a hammerhead ribozyme was inserted at the 5′ end of an HCV subgenomic replicon, allowing the generation of replicons with all four possible nucleotides at position 1. This analysis revealed a preference for a purine nucleotide at this position for initiation of RNA replication. The sequence requirements at positions 2–4 in the context of the J6/JFH-1 virus were also examined by selecting replication-competent virus from a pool containing randomized residues at these positions. There was strong selection for both the wild-type cytosine at position 2, and the wild-type sequence at positions 2–4 (CCU). An adenine residue was well tolerated at positions 3 and 4, which suggests that efficient RNA replication is less dependent on these residues.


2004 ◽  
Vol 78 (7) ◽  
pp. 3436-3446 ◽  
Author(s):  
Jan Krönke ◽  
Ralf Kittler ◽  
Frank Buchholz ◽  
Marc P. Windisch ◽  
Thomas Pietschmann ◽  
...  

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. It has recently been shown that HCV RNA replication is susceptible to small interfering RNAs (siRNAs), but the antiviral activity of siRNAs depends very much on their complementarity to the target sequence. Thus, the high degree of sequence diversity between different HCV genotypes and the rapid evolution of new quasispecies is a major problem in the development of siRNA-based gene therapies. For this study, we developed two alternative strategies to overcome these obstacles. In one approach, we used endoribonuclease-prepared siRNAs (esiRNAs) to simultaneously target multiple sites of the viral genome. We show that esiRNAs directed against various regions of the HCV coding sequence as well as the 5′ nontranslated region (5′ NTR) efficiently block the replication of subgenomic and genomic HCV replicons. In an alternative approach, we generated pseudotyped retroviruses encoding short hairpin RNAs (shRNAs). A total of 12 shRNAs, most of them targeting highly conserved sequence motifs within the 5′ NTR or the early core coding region, were analyzed for their antiviral activities. After the transduction of Huh-7 cells containing a subgenomic HCV replicon, we found that all shRNAs targeting sequences in domain IV or nearby coding sequences blocked viral replication. In contrast, only one of seven shRNAs targeting sequences in domain II or III had a similar degree of antiviral activity, indicating that large sections of the NTRs are resistant to RNA interference. Moreover, we show that naive Huh-7 cells that stably expressed certain 5′ NTR-specific shRNAs were largely resistant to a challenge with HCV replicons. These results demonstrate that the retroviral transduction of HCV-specific shRNAs provides a new possibility for antiviral intervention.


2002 ◽  
Vol 76 (23) ◽  
pp. 12001-12007 ◽  
Author(s):  
Naushad Ali ◽  
Keith D. Tardif ◽  
Aleem Siddiqui

ABSTRACT The hepatitis C virus (HCV) contains a plus-strand RNA genome. The 5′ noncoding region (NCR) of the viral genome functions as an internal ribosome entry site, and its unique 3′ NCR is required for the assembly of the replication complex during initiation of HCV RNA replication. Lohmann et al. (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilman, and R. Batenschlager, Science 285:110-113, 1999) developed a subgenomic HCV replicon system, which represents an important tool in studying HCV replication in cultured cells. In this study, we describe a cell-free replication system that utilizes cytoplasmic lysates prepared from Huh-7 cells harboring the HCV subgenomic replicons. These lysates, which contain ribonucleoprotein complexes associated with cellular membranes, were capable of incorporating [α32P]CTP into newly synthesized RNA from subgenomic replicons in vitro. Replicative forms (RFs) and replicative intermediates (RIs) were synthesized from the endogenous HCV RNA templates. Consistent with previous observations, RFs were found to be resistant to RNase A digestion, whereas RIs were sensitive to RNase treatment. The radiolabeled HCV RF-RI complexes contained both minus and plus strands and were specific to the lysates derived from replicon-expressing cells. The availability of a cell-free replication system offers opportunities to probe the mechanism(s) of HCV replication. It also provides a novel assay for potential therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document