scholarly journals Fitness Disadvantage of Transitional Intermediates Contributes to Dynamic Change in the Infecting-Virus Population during Coreceptor Switch in R5 Simian/Human Immunodeficiency Virus-Infected Macaques

2010 ◽  
Vol 84 (24) ◽  
pp. 12862-12871 ◽  
Author(s):  
Madina Shakirzyanova ◽  
Wuze Ren ◽  
Ke Zhuang ◽  
Silvana Tasca ◽  
Cecilia Cheng-Mayer

ABSTRACT Fitness disadvantage of the transitional intermediates compared to the initial R5 viruses has been suggested to constitute one of the blockades to coreceptor switching, explaining the late appearance of X4 viruses. Using a simian model for human immunodeficiency virus type 1 (HIV-1) coreceptor switching, we demonstrate in this study that similar molecular evolutionary pathways to coreceptor switch occur in more than one R5 simian/human immunodeficiency virus (SHIV)SF162P3N-infected macaque. In infected animals where multiple pathways for expansion or switch to CXCR4 coexist, fitness of the transitional intermediates in coreceptor usage efficiency influences their outgrowth and representation in the infecting virus population. Dualtropic and X4 viruses appear at different disease stages, but they have lower entry efficiency than the coexisting R5 strains, which may explain why they do not outcompete the R5 viruses. Similar observations were made in two infected macaques with coreceptor switch, providing in vivo evidence that fitness disadvantage is an obstacle to X4 emergence and expansion.

2008 ◽  
Vol 52 (7) ◽  
pp. 2608-2615 ◽  
Author(s):  
Signe Fransen ◽  
Gary Bridger ◽  
Jeannette M. Whitcomb ◽  
Jonathan Toma ◽  
Eric Stawiski ◽  
...  

ABSTRACT In a phase I/II evaluation of the CXCR4 antagonist AMD3100, human immunodeficiency virus RNA levels were significantly reduced in a single study subject who harbored CXCR4 (X4)-tropic virus, but not in subjects who harbored either dual/mixed (DM)-tropic or CCR5 (R5)-tropic virus (C. W. Hendrix et al., J. Acquir. Immune Defic. Syndr. 37:1253-1262, 2004). In this study, we analyzed the envelope clones of DM-tropic virus in baseline and treated virus populations from 14 subjects. Ten subjects exhibited significant reductions in CXCR4-mediated infectivity after 10 days of AMD3100 therapy relative to baseline (X4 suppressor group), while four subjects had no reduction of CXCR4-mediated infectivity (X4 nonsuppressor group). The baseline viruses of the X4 suppressor group infected CXCR4-expressing cells less efficiently than those of the X4 nonsuppressor group. Clonal analysis indicated that the baseline viruses from the X4 suppressor group contained a higher proportion of R5-tropic variants mixed with CXCR4-using variants, while the X4 nonsuppressor group was enriched for CXCR4-using variants. AMD3100 suppressed X4-tropic variants in all subjects studied, but not all dualtropic variants. Furthermore, dualtropic variants that used CXCR4 efficiently were suppressed by AMD3100, while dualtropic variants that used CXCR4 poorly were not. This study demonstrated that AMD3100 has the ability to suppress both X4-tropic and certain dualtropic variants in vivo. The suppression of CXCR4-using variants by AMD3100 is dependent on both the tropism composition of the virus population and the efficiency of CXCR4 usage of individual variants.


1991 ◽  
Vol 65 (8) ◽  
pp. 4502-4507 ◽  
Author(s):  
L P Martins ◽  
N Chenciner ◽  
B Asjö ◽  
A Meyerhans ◽  
S Wain-Hobson

Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 2128-2135 ◽  
Author(s):  
MP Busch ◽  
TH Lee ◽  
J Heitman

Abstract Various immunologic stimuli and heterologous viral regulatory elements have been shown to increase susceptibility to, and replication of, human immunodeficiency virus type 1 (HIV-1) in lymphocytes and monocytes in vitro. Transfusion of allogeneic blood components from heterologous donors constitutes a profound immunologic stimulus to the recipient, in addition to being a potential route of transmission of lymphotropic viral infections. To investigate the hypothesis that transfusions, and particularly those containing leukocytes, activate HIV-1 replication in infected recipient cells, we cocultured peripheral blood mononuclear cells (PBMC) from three anti-HIV-1-positive individuals with allogeneic donor PBMC, as well as partially purified populations of donor lymphocytes, monocytes, granulocytes, platelets, and red blood cells (RBC) and allogeneic cell-free plasma. Allogeneic PBMC induced a dose-related activation of HIV-1 expression in in vivo infected cells, followed by dissemination of HIV-1 to previously uninfected patient cells. Activation of HIV-1 replication was observed with donor lymphocytes, monocytes, and granulocytes, whereas no effect was seen with leukocyte-depleted RBC, platelets, or plasma (ie, therapeutic blood constituents). Allogeneic donor PBMC were also shown to upregulate HIV-1 expression in a “latently” infected cell line, and to increase susceptibility of heterologous donor PBMC to acute HIV-1 infection. Studies should be performed to evaluate whether transfusions of leukocyte-containing blood components accelerate HIV-1 dissemination and disease progression in vivo. If so, HIV-1-infected patients should be transfused as infrequently as possible and leukocyte-depleted (filtered) blood components should be used to avoid this complication.


2008 ◽  
Vol 82 (11) ◽  
pp. 5643-5649 ◽  
Author(s):  
Jinyan Liu ◽  
Rune Kjeken ◽  
Iacob Mathiesen ◽  
Dan H. Barouch

ABSTRACT In vivo electroporation (EP) has been shown to augment the immunogenicity of plasmid DNA vaccines, but its mechanism of action has not been fully characterized. In this study, we show that in vivo EP augmented cellular and humoral immune responses to a human immunodeficiency virus type 1 Env DNA vaccine in mice and allowed a 10-fold reduction in vaccine dose. This enhancement was durable for over 6 months, and re-exposure to antigen resulted in anamnestic effector and central memory CD8+ T-lymphocyte responses. Interestingly, in vivo EP also recruited large mixed cellular inflammatory infiltrates to the site of inoculation. These infiltrates contained 45-fold-increased numbers of macrophages and 77-fold-increased numbers of dendritic cells as well as 2- to 6-fold-increased numbers of B and T lymphocytes compared to infiltrates following DNA vaccination alone. These data suggest that recruiting inflammatory cells, including antigen-presenting cells (APCs), to the site of antigen production substantially improves the immunogenicity of DNA vaccines. Combining in vivo EP with plasmid chemokine adjuvants that similarly recruited APCs to the injection site, however, did not result in synergy.


2000 ◽  
Vol 74 (15) ◽  
pp. 7039-7047 ◽  
Author(s):  
Louis M. Mansky ◽  
Sandra Preveral ◽  
Luc Selig ◽  
Richard Benarous ◽  
Serge Benichou

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-binding properties and used to trans complement vpr null mutant HIV-1. A striking correlation was established between the abilities of Vpr to interact with UNG and to influence the HIV-1 mutation rate. We demonstrate that Vpr incorporation into virus particles is required to influence the in vivo mutation rate and to mediate virion packaging of the nuclear form of UNG. The recruitment of UNG into virions indicates a mechanism for how Vpr can influence reverse transcription accuracy. Our data suggest that distinct mechanisms evolved in primate and nonprimate lentiviruses to reconcile uracil misincorporation into lentiviral DNA.


2004 ◽  
Vol 85 (6) ◽  
pp. 1479-1484
Author(s):  
Mary Poss ◽  
David C. Holley ◽  
Roman Biek ◽  
Harold Cox ◽  
John Gerdes

The virus population transmitted by a human immunodeficiency virus type 1 (HIV-1) infected individual undergoes restriction and subsequent diversification in the new host. However, in contrast to men, who have limited virus diversity at seroconversion, there is measurable diversity in viral envelope gene sequences in women infected with clade A HIV-1. In this study, virus sequence diversity in three unrelated, clade A infected women preceding and shortly after seroconversion was evaluated. It was demonstrated that there is measurable evolution of envelope gene sequences over this time interval. Furthermore, in each of the three individuals, amino acid substitutions arose at five or six positions in sequences derived at or shortly after seroconversion relative to sequences obtained from the seronegative sample. Presented here is a model of clade A gp120 to determine the location of substitutions that appeared as the virus population became established in three clade A HIV-1 infected women.


2003 ◽  
Vol 84 (10) ◽  
pp. 2715-2722 ◽  
Author(s):  
Gkikas Magiorkinis ◽  
Dimitrios Paraskevis ◽  
Anne-Mieke Vandamme ◽  
Emmanouil Magiorkinis ◽  
Vana Sypsa ◽  
...  

Recombination plays a pivotal role in the evolutionary process of many different virus species, including retroviruses. Analysis of all human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants revealed that they are more complex than described initially. Recombination frequency is higher within certain genomic regions, such as partial reverse transcriptase (RT), vif/vpr, the first exons of tat/rev, vpu and gp41. A direct correlation was observed between recombination frequency and sequence similarity across the HIV-1 genome, indicating that sufficient sequence similarity is required upstream of the recombination breakpoint. This finding suggests that recombination in vivo may occur preferentially during reverse transcription through the strand displacement-assimilation model rather than the copy-choice model.


Sign in / Sign up

Export Citation Format

Share Document