scholarly journals Correction for Chiuppesi et al., “Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Responses against Human Cytomegalovirus in Mice”

2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Flavia Chiuppesi ◽  
Jenny Nguyen ◽  
Soojin Park ◽  
Heidi Contreras ◽  
Mindy Kha ◽  
...  
2007 ◽  
Vol 81 (16) ◽  
pp. 8563-8570 ◽  
Author(s):  
Sampa Santra ◽  
Yue Sun ◽  
Jenny G. Parvani ◽  
Valerie Philippon ◽  
Michael S. Wyand ◽  
...  

ABSTRACT As the diversity of potential immunogens increases within certain classes of vectors, the possibility has arisen of employing heterologous prime/boost immunizations using diverse members of the same family of vectors. The present study was initiated to explore the use of divergent pox vectors in a prime/boost regimen to elicit high-frequency cellular immune responses to human immunodeficiency virus type 1 envelope and simian immunodeficiency virus gag in rhesus monkeys. We demonstrated that monkeys vaccinated with a recombinant modified vaccinia virus Ankara (rMVA) prime/recombinant fowlpox virus (rFPV) boost regimen and monkeys vaccinated with a recombinant vaccinia virus prime/rFPV boost regimen developed comparable cellular immune responses that were greater in magnitude than those elicited by a homologous prime/boost with rMVA. Nevertheless, comparable magnitude recall cellular immune responses were observed in monkeys vaccinated with heterologous and homologous recombinant poxvirus following challenge with the CXCR4-tropic SHIV-89.6P. Consistent with this finding, comparable levels of containment of viral replication and CD4+ T-lymphocyte preservation were seen in these groups of recombinant poxvirus-vaccinated monkeys. This study supports further exploration of combining recombinant vectors of the same family in prime/boost immunization strategies to optimize vaccine-elicited cellular immune responses.


2000 ◽  
Vol 74 (16) ◽  
pp. 7651-7655 ◽  
Author(s):  
Juan C. Ramírez ◽  
M. Magdalena Gherardi ◽  
Dolores Rodríguez ◽  
Mariano Esteban

ABSTRACT A problem associated with the use of vaccinia virus recombinants as vaccines is the existence of a large human population with preexisting immunity to the vector. Here we showed that after a booster with attenuated recombinant modified vaccinia virus Ankara (rMVA), higher humoral and cellular immune responses to foreign antigens (human immunodeficiency virus type 1 Env and β-galactosidase) were found in mice preimmunized with rMVA than in mice primed with the virulent Western Reserve strain and boosted with rMVA. This enhancement correlated with higher levels of expression of foreign antigens after the booster.


2000 ◽  
Vol 74 (2) ◽  
pp. 923-933 ◽  
Author(s):  
Juan C. Ramírez ◽  
M. Magdalena Gherardi ◽  
Mariano Esteban

ABSTRACT The modified vaccinia virus Ankara (MVA) strain is a candidate vector for vaccination against pathogens and tumors, due to safety concerns and the proven ability of recombinants based on this vector to trigger protection against pathogens in animals. In this study we addressed the fate of the MVA vector in BALB/c mice after intraperitoneal inoculation in comparison with that of the replication-competent Western Reserve (WR) strain by measuring levels of expression of the reporter luciferase gene, the capability to infect target tissues from the site of inoculation, and the length of time of virus persistence. We evaluated the extent of humoral and cellular immune responses induced against the virus antigens and a recombinant product (β-galactosidase). We found that MVA infects the same target tissues as the WR strain; surprisingly, within 6 h postinoculation the levels of expression of antigens were higher in tissues from MVA-infected mice than in tissues from mice infected with wild-type virus but at later times postinoculation were 2 to 4 log units higher in tissues from WR-infected mice. In spite of this, antibodies and cellular immune responses to viral vector antigens were considerably lower in MVA-inoculated mice than in WR virus-inoculated mice. In contrast, the cellular immune response to a foreign antigen expressed from MVA was similar to and even higher than that triggered by the recombinant WR virus. MVA elicited a Th1 type of immune response, and the main proinflammatory cytokines induced were interleukin-6 and tumor necrosis factor alpha. Our findings have defined the biological characteristics of MVA infection in tissues and the immune parameters activated in the course of virus infection. These results are of significance with respect to optimal use of MVA as a vaccine.


2013 ◽  
Vol 21 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Christelle Remy-Ziller ◽  
Claire Germain ◽  
Anita Spindler ◽  
Chantal Hoffmann ◽  
Nathalie Silvestre ◽  
...  

ABSTRACTWomen showing normal cytology but diagnosed with a persistent high-risk human papillomavirus (HR-HPV) infection have a higher risk of developing high-grade cervical intraepithelial neoplasia and cervical cancer than noninfected women. As no therapeutic management other than surveillance is offered to these women, there is a major challenge to develop novel targeted therapies dedicated to the treatment of these patients. As such, E1 and E2 antigens, expressed early in the HPV life cycle, represent very interesting candidates. Both proteins are necessary for maintaining coordinated viral replication and gene synthesis during the differentiation process of the epithelium and are essential for the virus to complete its normal and propagative replication cycle. In the present study, we evaluated a new active targeted immunotherapeutic, a modified vaccinia virus Ankara (MVA) vector containing the E1 sequence of HPV16, aimed at inducing cellular immune responses with the potential to help and clear persistent HPV16-related infection. We carried out an extensive comparative time course analysis of the cellular immune responses induced by different schedules of immunization in C57BL/6 mice. We showed that multiple injections of MVA-E1 allowed sustained HPV16 E1-specific cellular immune responses in vaccinated mice and had no impact on the exhaustion phenotype of the generated HPV16 E1-specific CD8+T cells, but they led to the differentiation of multifunctional effector T cells with high cytotoxic capacity. This study provides proof of concept that an MVA expressing HPV16 E1 can induce robust and long-lasting E1-specific responses and warrants further development of this candidate.


Sign in / Sign up

Export Citation Format

Share Document