scholarly journals Loss of Naïve Cells Accompanies Memory CD4+ T-Cell Depletion during Long-Term Progression to AIDS in Simian Immunodeficiency Virus-Infected Macaques

2006 ◽  
Vol 81 (2) ◽  
pp. 893-902 ◽  
Author(s):  
Yoshiaki Nishimura ◽  
Tatsuhiko Igarashi ◽  
Alicia Buckler-White ◽  
Charles Buckler ◽  
Hiromi Imamichi ◽  
...  

ABSTRACT Human immunodeficiency virus and simian immunodeficiency virus (SIV) induce a slow progressive disease, characterized by the massive loss of memory CD4+ T cells during the acute infection followed by a recovery phase in which virus replication is partially controlled. However, because the initial injury is so severe and virus production persists, the immune system eventually collapses and a symptomatic fatal disease invariably occurs. We have assessed CD4+ T-cell dynamics and disease progression in 12 SIV-infected rhesus monkeys for nearly 2 years. Three macaques exhibiting a rapid progressor phenotype experienced rapid and irreversible loss of memory, but not naïve, CD4+ T lymphocytes from peripheral blood and secondary lymphoid tissues and died within the first 6 months of virus inoculation. In contrast, SIV-infected conventional progressor animals sustained marked but incomplete depletions of memory CD4+ T cells and continuous activation/proliferation of this T-lymphocyte subset. This was associated with a profound loss of naïve CD4+ T cells from peripheral blood and secondary lymphoid tissues, which declined at rates that correlated with disease progression. These data suggest that the persistent loss of memory CD4+T cells, which are being eliminated by direct virus killing and activation-induced cell death, requires the continuous differentiation of naïve into memory CD4+ T cells. This unrelenting replenishment process eventually leads to the exhaustion of the naïve CD4+T-cell pool and the development of disease.

2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2008 ◽  
Vol 82 (22) ◽  
pp. 11181-11196 ◽  
Author(s):  
Meritxell Genescà ◽  
Pamela J. Skinner ◽  
Jung Joo Hong ◽  
Jun Li ◽  
Ding Lu ◽  
...  

ABSTRACT The presence, at the time of challenge, of antiviral effector T cells in the vaginal mucosa of female rhesus macaques immunized with live-attenuated simian-human immunodeficiency virus 89.6 (SHIV89.6) is associated with consistent and reproducible protection from pathogenic simian immunodeficiency virus (SIV) vaginal challenge (18). Here, we definitively demonstrate the protective role of the SIV-specific CD8+ T-cell response in SHIV-immunized monkeys by CD8+ lymphocyte depletion, an intervention that abrogated SHIV-mediated control of challenge virus replication and largely eliminated the SIV-specific T-cell responses in blood, lymph nodes, and genital mucosa. While in the T-cell-intact SHIV-immunized animals, polyfunctional and degranulating SIV-specific CD8+ T cells were present in the genital tract and lymphoid tissues from the day of challenge until day 14 postchallenge, strikingly, expansion of SIV-specific CD8+ T cells in the immunized monkeys was minimal and limited to the vagina. Thus, protection from uncontrolled SIV replication in animals immunized with attenuated SHIV89.6 is primarily mediated by CD8+ T cells that do not undergo dramatic systemic expansion after SIV challenge. These findings demonstrate that despite, and perhaps because of, minimal systemic expansion of T cells at the time of challenge, a stable population of effector-cytotoxic CD8+ T cells can provide significant protection from vaginal SIV challenge.


2001 ◽  
Vol 75 (23) ◽  
pp. 11483-11495 ◽  
Author(s):  
Zdenek Hel ◽  
Janos Nacsa ◽  
Brian Kelsall ◽  
Wen-Po Tsai ◽  
Norman Letvin ◽  
...  

ABSTRACT The identification of several simian immunodeficiency virus mac251 (SIVmac251) cytotoxic T-lymphocyte epitopes recognized by CD8+ T cells of infected rhesus macaques carrying the Mamu-A*01 molecule and the use of peptide-major histocompatibility complex tetrameric complexes enable the study of the frequency, breadth, functionality, and distribution of virus-specific CD8+ T cells in the body. To begin to address these issues, we have performed a pilot study to measure the virus-specific CD8+ and CD4+ T-cell response in the blood, lymph nodes, spleen, and gastrointestinal lymphoid tissues of eight Mamu-A*01-positive macaques, six of those infected with SIVmac251 and two infected with the pathogenic simian-human immunodeficiency virus KU2. We focused on the analysis of the response to peptide p11C, C-M (Gag 181), since it was predominant in most tissues of all macaques. Five macaques restricted viral replication effectively, whereas the remaining three failed to control viremia and experienced a progressive loss of CD4+ T cells. The frequency of the Gag 181 (p11C, C→M) immunodominant response varied among different tissues of the same animal and in the same tissues from different animals. We found that the functionality of this virus-specific CD8+ T-cell population could not be assumed based on the ability to specifically bind to the Gag 181 tetramer, particularly in the mucosal tissues of some of the macaques infected by SIVmac251 that were progressing to disease. Overall, the functionality of CD8+ tetramer-binding T cells in tissues assessed by either measurement of cytolytic activity or the ability of these cells to produce gamma interferon or tumor necrosis factor alpha was low and was even lower in the mucosal tissue than in blood or spleen of some SIVmac251-infected animals that failed to control viremia. The data obtained in this pilot study lead to the hypothesis that disease progression may be associated with loss of virus-specific CD8+ T-cell function.


2012 ◽  
Vol 209 (4) ◽  
pp. 641-651 ◽  
Author(s):  
Afam A. Okoye ◽  
Mukta Rohankhedkar ◽  
Chike Abana ◽  
Audrie Pattenn ◽  
Matthew Reyes ◽  
...  

The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4+ memory T cell (TM) homeostasis. CD4+ naive T cells (TN) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4+ TN in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4+ TN before SIV infection. CD4+ TN-depleted and CD4+ TN-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4+ T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4+ TM recovery, only sham-treated RMs reconstituted CD4+ TN. CD4+ TN-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4+ T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8+ T cell responses. However, CD4+ TN-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4+ TN deficiency had no significant effect on CD4+ TM homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4+ TN compartment is dispensable for CD4+ TM homeostasis in progressive SIV infection, and they confirm that CD4+ TM comprise a homeostatically independent compartment that is intrinsically capable of self-renewal.


2002 ◽  
Vol 76 (19) ◽  
pp. 9981-9990 ◽  
Author(s):  
Donald L. Sodora ◽  
Jeffrey M. Milush ◽  
Felecia Ware ◽  
Aneta Wozniakowski ◽  
Lisa Montgomery ◽  
...  

ABSTRACT The thymus is responsible for de novo production of CD4+ and CD8+ T cells and therefore is essential for T-cell renewal. The goal of this study was to assess the impact of simian immunodeficiency virus (SIV) infection on the production of T cells by the thymus. Levels of recent thymic emigrants within the peripheral blood were assessed through quantification of macaque T-cell receptor excision circles (TREC). Comparison of SIV-infected macaques (n = 15) to uninfected macaques (n = 23) revealed stable or increased TREC levels at 20 to 34 weeks postinfection. Further assessment of SIV-infected macaques (n = 4) determined that TREC levels decreased between 24 and 48 weeks postinfection. Through the assessment of longitudinal time points in three additional SIVmac239-infected macaques, the SIV infection was divided into two distinct phases. During phase 1 (16 to 30 weeks), TREC levels remained stable or increased within both the CD4 and CD8 T-cell populations. During phase 2 (after 16 to 30 weeks), TREC levels declined in both T-cell populations. As has been described for human immunodeficiency virus (HIV)-infected patients, this decline in TREC levels did at times correlate with an increased level of T-cell proliferation (Ki67+ cells). However, not all TREC decreases could be attributed to increased T-cell proliferation. Further evidence for thymic dysfunction was observed directly in a SIVmac239-infected macaque that succumbed to simian AIDS at 65 weeks postinfection. The thymus of this macaque contained an increased number of memory/effector CD8+ T cells and an increased level of apoptotic cells. In summary, reduced levels of TREC can be observed beginning at 16 to 30 weeks post-SIV infection and correlate with changes indicative of dysfunction within the thymic tissue. SIV infection of macaques will be a useful model system to elucidate the mechanisms responsible for the thymic dysfunction observed in HIV-infected patients.


2008 ◽  
Vol 82 (8) ◽  
pp. 4016-4027 ◽  
Author(s):  
David Verhoeven ◽  
Sumathi Sankaran ◽  
Melanie Silvey ◽  
Satya Dandekar

ABSTRACT Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.


2003 ◽  
Vol 77 (16) ◽  
pp. 8783-8792 ◽  
Author(s):  
Ronald S. Veazey ◽  
Jeffrey D. Lifson ◽  
Ivona Pandrea ◽  
Jeannette Purcell ◽  
Michael Piatak ◽  
...  

ABSTRACT Children with human immunodeficiency virus infection often have higher viral loads and progress to AIDS more rapidly than adults. Since the intestinal tract is a major site of early viral replication and CD4+ T-cell depletion in adults, we examined the effects of simian immunodeficiency virus (SIV) on both peripheral and intestinal lymphocytes from 13 neonatal macaques infected with SIVmac239. Normal neonates had more CD4+ T cells and fewer CD8+ T cells in all tissues than adults. Surprisingly, neonates had substantial percentages of CD4+ T cells with an activated, memory phenotype (effector CD4+ T cells) in the lamina propria of the intestine compared to peripheral lymphoid tissues, even when examined on the day of birth. Moreover, profound and selective depletion of jejunum lamina propria CD4+ T cells occurred in neonatal macaques within 21 days of infection, which was preceded by large numbers of SIV-infected cells in this compartment. Furthermore, neonates with less CD4+ T-cell depletion in tissues tended to have higher viral loads. The persistence of intestinal lamina propria CD4+ T cells in some neonates with high viral loads suggests that increased turnover and/or resistance to CD4+ T-cell loss may contribute to the higher viral loads and increased severity of disease in neonatal hosts.


2007 ◽  
Vol 81 (9) ◽  
pp. 4445-4456 ◽  
Author(s):  
L. E. Pereira ◽  
F. Villinger ◽  
N. Onlamoon ◽  
P. Bryan ◽  
A. Cardona ◽  
...  

ABSTRACT Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM, but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition, immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides, there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM, their role in disease resistance in SM remains unclear.


2010 ◽  
Vol 84 (7) ◽  
pp. 3259-3269 ◽  
Author(s):  
Kristina Allers ◽  
Christoph Loddenkemper ◽  
Jörg Hofmann ◽  
Anett Unbehaun ◽  
Désirée Kunkel ◽  
...  

ABSTRACT The gastrointestinal tract represents a major site for human and simian immunodeficiency virus (HIV and SIV) replication and CD4+ T-cell depletion. Despite severe depletion of mucosal CD4+ T cells, FOXP3+ regulatory CD4+ T cells (Treg) are highly increased in the gut mucosa of chronically HIV-infected individuals and may contribute to HIV pathogenesis, either by their immunosuppressive function or as a significant target cell population for virus production. Little is known about the susceptibility of mucosal Treg to viral infection and the longitudinal effect of HIV/SIV infection on Treg dynamics. In this study, we determined the level of SIV infection in Treg and nonregulatory CD4+ T cells (non-Treg) isolated from the colon of SIV-infected rhesus macaques. The dynamics of mucosal Treg and alterations in the mucosal CD4+ T-cell pool were examined longitudinally. Our findings indicate that mucosal Treg were less susceptible to productive SIV infection than non-Treg and thus were selectively spared from SIV-mediated cell death. In addition to improved survival, local expansion of Treg by SIV-induced proliferation of the mucosal CD4+ T-cell pool facilitated the accumulation of mucosal Treg during the course of infection. High frequency of mucosal Treg in chronic SIV infection was strongly related to a reduction of perforin-expressing cells. In conclusion, this study suggests that mucosal Treg are less affected by productive SIV infection than non-Treg and therefore spared from depletion. Although SIV production is limited in mucosal Treg, Treg accumulation may indirectly contribute to viral persistence by suppressing antiviral immune responses.


Sign in / Sign up

Export Citation Format

Share Document