scholarly journals Actin-Modulating Protein Cofilin Is Involved in the Formation of Measles Virus Ribonucleoprotein Complex at the Perinuclear Region

2015 ◽  
Vol 89 (20) ◽  
pp. 10524-10531 ◽  
Author(s):  
Ritsuko Koga ◽  
Yukihiko Sugita ◽  
Takeshi Noda ◽  
Yusuke Yanagi ◽  
Shinji Ohno

ABSTRACTIn measles virus (MV)-infected cells, the ribonucleoprotein (RNP) complex, comprised of the viral genome and the nucleocapsid (N) protein, phosphoprotein (P protein), and large protein, assembles at the perinuclear region and synthesizes viral RNAs. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, interacts with the MV N protein and aids in the formation of the RNP complex. Knockdown of cofilin using the short hairpin RNA reduces the formation of the RNP complex after MV infection and that of the RNP complex-like structure after plasmid-mediated expression of MV N and P proteins. A lower level of formation of the RNP complex results in the reduction of viral RNA synthesis. Cofilin phosphorylation on the serine residue at position 3, an enzymatically inactive form, is increased after MV infection and the phosphorylated form of cofilin is preferentially included in the complex. These results indicate that cofilin plays an important role in MV replication by increasing formation of the RNP complex and viral RNA synthesis.IMPORTANCEMany RNA viruses induce within infected cells the structure called the ribonucleoprotein (RNP) complex in which viral RNA synthesis occurs. It is comprised of the viral genome and proteins that include the viral RNA polymerase. The cellular proteins involved in the formation of the RNP complex are largely unknown. In this report, we show that cofilin, an actin-modulating host protein, binds to the measles virus (MV) nucleocapsid protein and plays an important role in the formation of the MV RNP complex and MV RNA synthesis. The level of the phosphorylated form of cofilin, enzymatically inactive, is increased after MV infection, and the phosphorylated form is preferentially associated with the RNP complex. Our findings determined with cofilin will help us better understand the mechanism by which the RNP complex is formed in virus-infected cells and develop new antiviral drugs targeting the RNP complex.

Virology ◽  
1973 ◽  
Vol 53 (2) ◽  
pp. 379-383 ◽  
Author(s):  
Carol Carter ◽  
Ann Schluederberg ◽  
Francis L. Black

2009 ◽  
Vol 83 (20) ◽  
pp. 10374-10383 ◽  
Author(s):  
Masaharu Iwasaki ◽  
Makoto Takeda ◽  
Yuta Shirogane ◽  
Yuichiro Nakatsu ◽  
Takanori Nakamura ◽  
...  

ABSTRACT The genome of measles virus (MV) is encapsidated by the nucleocapsid (N) protein and associates with RNA-dependent RNA polymerase to form the ribonucleoprotein complex. The matrix (M) protein is believed to play an important role in MV assembly by linking the ribonucleoprotein complex with envelope glycoproteins. Analyses using a yeast two-hybrid system and coimmunoprecipitation in mammalian cells revealed that the M protein interacts with the N protein and that two leucine residues at the carboxyl terminus of the N protein (L523 and L524) are critical for the interaction. In MV minigenome reporter gene assays, the M protein inhibited viral RNA synthesis only when it was able to interact with the N protein. The N protein colocalized with the M protein at the plasma membrane when the proteins were coexpressed in plasmid-transfected or MV-infected cells. In contrast, the N protein formed small dots in the perinuclear area when it was expressed without the M protein, or it was incapable of interacting with the M protein. Furthermore, a recombinant MV possessing a mutant N protein incapable of interacting with the M protein grew much less efficiently than the parental virus. Since the M protein has an intrinsic ability to associate with the plasma membrane, it may retain the ribonucleoprotein complex at the plasma membrane by binding to the N protein, thereby stopping viral RNA synthesis and promoting viral particle production. Consequently, our results indicate that the M protein regulates MV RNA synthesis and assembly via its interaction with the N protein.


1999 ◽  
Vol 73 (8) ◽  
pp. 6862-6871 ◽  
Author(s):  
Mark R. Denison ◽  
Willy J. M. Spaan ◽  
Yvonne van der Meer ◽  
C. Anne Gibson ◽  
Amy C. Sims ◽  
...  

ABSTRACT The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.


1979 ◽  
Vol 57 (6) ◽  
pp. 902-913 ◽  
Author(s):  
Patrick W. K. Lee ◽  
John S. Colter

Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA−ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 °C) to the nonpermissive (39 °C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA− phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 °C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant.Subviral (53 S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 °C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.


2002 ◽  
Vol 76 (23) ◽  
pp. 12008-12022 ◽  
Author(s):  
Brandon L. Walter ◽  
Todd B. Parsley ◽  
Ellie Ehrenfeld ◽  
Bert L. Semler

ABSTRACT The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5′-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.


2020 ◽  
Vol 8 (8) ◽  
pp. 1215
Author(s):  
Bianca S. Bodmer ◽  
Josephin Greßler ◽  
Marie L. Schmidt ◽  
Julia Holzerland ◽  
Janine Brandt ◽  
...  

Most filoviruses cause severe disease in humans. For example, Ebola virus (EBOV) is responsible for the two most extensive outbreaks of filovirus disease to date, with case fatality rates of 66% and 40%, respectively. In contrast, Reston virus (RESTV) is apparently apathogenic in humans, and while transmission of RESTV from domestic pigs to people results in seroconversion, no signs of disease have been reported in such cases. The determinants leading to these differences in pathogenicity are not well understood, but such information is needed in order to better evaluate the risks posed by the repeated spillover of RESTV into the human population and to perform risk assessments for newly emerging filoviruses with unknown pathogenic potential. Interestingly, RESTV and EBOV already show marked differences in their growth in vitro, with RESTV growing slower and reaching lower end titers. In order to understand the basis for this in vitro attenuation of RESTV, we used various life cycle modeling systems mimicking different aspects of the virus life cycle. Our results showed that viral RNA synthesis was markedly slower when using the ribonucleoprotein (RNP) components from RESTV, rather than those for EBOV. In contrast, the kinetics of budding and entry were indistinguishable between these two viruses. These data contribute to our understanding of the molecular basis for filovirus pathogenicity by showing that it is primarily differences in the robustness of RNA synthesis by the viral RNP complex that are responsible for the impaired growth of RESTV in tissue culture.


2000 ◽  
Vol 74 (21) ◽  
pp. 9911-9915 ◽  
Author(s):  
Séverine Vincent ◽  
Denis Gerlier ◽  
Serge N. Manié

ABSTRACT During measles virus (MV) replication, approximately half of the internal M and N proteins, together with envelope H and F glycoproteins, are selectively enriched in microdomains rich in cholesterol and sphingolipids called membrane rafts. Rafts isolated from MV-infected cells after cold Triton X-100 solubilization and flotation in a sucrose gradient contain all MV components and are infectious. Furthermore, the H and F glycoproteins from released virus are also partly in membrane rafts (S. N. Manié et al., J. Virol. 74:305–311, 2000). When expressed alone, the M but not N protein shows a low partitioning (around 10%) into rafts; this distribution is unchanged when all of the internal proteins, M, N, P, and L, are coexpressed. After infection with MGV, a chimeric MV where both H and F proteins have been replaced by vesicular stomatitis virus G protein, both the M and N proteins were found enriched in membrane rafts, whereas the G protein was not. These data suggest that assembly of internal MV proteins into rafts requires the presence of the MV genome. The F but not H glycoprotein has the intrinsic ability to be localized in rafts. When coexpressed with F, the H glycoprotein is dragged into the rafts. This is not observed following coexpression of either the M or N protein. We propose a model for MV assembly into membrane rafts where the virus envelope and the ribonucleoparticle colocalize and associate.


2008 ◽  
Vol 82 (17) ◽  
pp. 8296-8306 ◽  
Author(s):  
Yuichiro Nakatsu ◽  
Makoto Takeda ◽  
Shinji Ohno ◽  
Yuta Shirogane ◽  
Masaharu Iwasaki ◽  
...  

ABSTRACT Measles is an acute febrile infectious disease with high morbidity and mortality. The genome of measles virus (MV), the causative agent, encodes two accessory products, V and C proteins, that play important roles in MV virulence. The V but not the C protein of the IC-B strain (a well-characterized virulent strain of MV) has been shown to block the Jak/Stat signaling pathway and counteract the cellular interferon (IFN) response. We have recently shown that a recombinant IC-B strain that lacks C protein expression replicates poorly in certain cell lines, and its growth defect is related to translational inhibition and strong IFN induction. Here, we show that the V protein of the MV IC-B strain also blocks the IFN induction pathway mediated by the melanoma differentiation-associated gene 5 product, thus actively interfering with the host IFN response at two different steps. On the other hand, the C protein per se possesses no activity to block the IFN induction pathway. Our data indicate that the C protein acts as a regulator of viral RNA synthesis, thereby acting indirectly to suppress IFN induction. Since recombinant MVs with C protein defective in modulating viral RNA synthesis or lacking C protein expression strongly stimulate IFN production, in spite of V protein production, both the C and V proteins must be required for MV to fully circumvent the host IFN response.


2016 ◽  
Vol 90 (11) ◽  
pp. 5384-5398 ◽  
Author(s):  
Long Liu ◽  
Jiao Tian ◽  
Hao Nan ◽  
Mengmeng Tian ◽  
Yuan Li ◽  
...  

ABSTRACTPorcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis.IMPORTANCEIt is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of longer viral sgmRNAs and gRNA. Our data here provide some new insights into the discontinuous to continuous extension of PRRSV RNA synthesis and also offer a new potential anti-PRRSV strategy targeting the N-Nsp9 and/or N-DHX9 interaction.


Sign in / Sign up

Export Citation Format

Share Document