scholarly journals The Cellular Ataxia Telangiectasia-Mutated Kinase Promotes Epstein-Barr Virus Lytic Reactivation in Response to Multiple Different Types of Lytic Reactivation-Inducing Stimuli

2012 ◽  
Vol 86 (24) ◽  
pp. 13360-13370 ◽  
Author(s):  
S. R. Hagemeier ◽  
E. A. Barlow ◽  
Q. Meng ◽  
S. C. Kenney
BMJ ◽  
1981 ◽  
Vol 282 (6262) ◽  
pp. 425-427 ◽  
Author(s):  
A K Saemundsen ◽  
A I Berkel ◽  
W Henle ◽  
G Henle ◽  
M Anvret ◽  
...  

Virology ◽  
2017 ◽  
Vol 507 ◽  
pp. 220-230 ◽  
Author(s):  
Lena N. Lupey-Green ◽  
Stephanie A. Moquin ◽  
Kayla A. Martin ◽  
Shane M. McDevitt ◽  
Michael Hulse ◽  
...  

2021 ◽  
Vol 17 (8) ◽  
pp. e1009783
Author(s):  
Nicholas Van Sciver ◽  
Makoto Ohashi ◽  
Nicholas P. Pauly ◽  
Jillian A. Bristol ◽  
Scott E. Nelson ◽  
...  

The Epstein-Barr virus (EBV) human herpesvirus is associated with B-cell and epithelial-cell malignancies, and both the latent and lytic forms of viral infection contribute to the development of EBV-associated tumors. Here we show that the Hippo signaling effectors, YAP and TAZ, promote lytic EBV reactivation in epithelial cells. The transcriptional co-activators YAP/TAZ (which are inhibited by Hippo signaling) interact with DNA-binding proteins, particularly TEADs, to induce transcription. We demonstrate that depletion of either YAP or TAZ inhibits the ability of phorbol ester (TPA) treatment, cellular differentiation or the EBV BRLF1 immediate-early (IE) protein to induce lytic EBV reactivation in oral keratinocytes, and show that over-expression of constitutively active forms of YAP and TAZ reactivate lytic EBV infection in conjunction with TEAD family members. Mechanistically, we find that YAP and TAZ interact with, and activate, the EBV BZLF1 immediate-early promoter. Furthermore, we demonstrate that YAP, TAZ, and TEAD family members are expressed at much higher levels in epithelial cell lines in comparison to B-cell lines, and find that EBV infection of oral keratinocytes increases the level of activated (dephosphorylated) YAP and TAZ. Finally, we have discovered that lysophosphatidic acid (LPA), a known YAP/TAZ activator that plays an important role in inflammation, induces EBV lytic reactivation in epithelial cells through a YAP/TAZ dependent mechanism. Together these results establish that YAP/TAZ are powerful inducers of the lytic form of EBV infection and suggest that the ability of EBV to enter latency in B cells at least partially reflects the extremely low levels of YAP/TAZ and TEADs in this cell type.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Yuchen Zhang ◽  
Chang Jiang ◽  
Stephen J. Trudeau ◽  
Yohei Narita ◽  
Bo Zhao ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches. IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV’s discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.


The Lancet ◽  
1977 ◽  
Vol 309 (8022) ◽  
pp. 1160 ◽  
Author(s):  
Jean Joncas ◽  
Normand Lapointe ◽  
Francine Gervais ◽  
Michele Leyritz ◽  
Adrian Wills

Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 260-266 ◽  
Author(s):  
Helen E. Heslop

Abstract Epstein-Barr virus (EBV) is associated with several different types of aggressive non-Hodgkin lymphoma (NHL). Individuals with primary or secondary immunodeficiency are susceptible to developing B cell lymphoproliferation due to outgrowth of EBV-infected B cells that express type III latency characterized by expression of all nine latent-cycle EBV antigens. These cells would normally be susceptible to control by EBV-specific T cells, and strategies to restore EBV-specific immune responses may be effective therapeutically. EBV-associated lymphomas occurring in individuals who do not have a known immunodeficiency include NK and T malignancies with cytotoxic phenotypes, sporadic cases of B-NHL and lymphomatoid granulomatosis. These malignancies respond poorly to standard chemoradiotherapy, and immunotherapeutic or pharmacologic strategies targeting EBV are being explored.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1334-1343 ◽  
Author(s):  
Sumita Bhaduri-McIntosh ◽  
Marisa J. Rotenberg ◽  
Benjamin Gardner ◽  
Marie Robert ◽  
George Miller

AbstractAnswers to questions about frequency and repertoire of immune cells, relative contributions made by different types of immune cells toward the total Epstein-Barr virus (EBV)–directed response and the variation of such responses in healthy persons have been elusive because of disparities in assays, antigen presenting cells, and antigenic sources used in previous experiments. In this study, we addressed these questions using an assay that allowed direct comparison of responses generated by different types of cells of the immune system. This short-term (20-hour) ex vivo assay measured interferon-γ production by blood cells in response to autologous EBV-transformed lymphoblastoid cell lines (LCLs). Our experiments defined the variation in responses among persons and clearly distinguished 10 healthy EBV-immune from 10 healthy EBV-naive persons. In EBV-immune persons, 33% of responding cells were CD4+, 43.3% were CD8+, and 12.9% were γ-δ T cells. LCL-reactive CD8+ T cells were only 1.7-fold more frequent than similarly reactive CD4+T cells. Responses by γ-δ T cells were 6-fold higher in seropositive than in seronegative persons. Our findings emphasize the importance of CD4+ and γ-δ T-cell responses and have implications for immunotherapy and for identifying defects in T-cell populations that might predispose to development of EBV-associated lymphomas.


Sign in / Sign up

Export Citation Format

Share Document