scholarly journals Repurposing Papaverine as an Antiviral Agent against Influenza Viruses and Paramyxoviruses

2020 ◽  
Vol 94 (6) ◽  
Author(s):  
Megha Aggarwal ◽  
George P. Leser ◽  
Robert A. Lamb

ABSTRACT Influenza viruses are highly infectious and are the leading cause of human respiratory diseases and may trigger severe epidemics and occasional pandemics. Although antiviral drugs against influenza viruses have been developed, there is an urgent need to design new strategies to develop influenza virus inhibitors due to the increasing resistance of viruses toward currently available drugs. In this study, we examined the antiviral activity of natural compounds against the following influenza virus strains: A/WSN/33 (H1N1), A/Udorn/72 (H3N2), and B/Lee/40. Papaverine (a nonnarcotic alkaloid that has been used for the treatment of heart disease, impotency, and psychosis) was found to be an effective inhibitor of multiple strains of influenza virus. Kinetic studies demonstrated that papaverine inhibited influenza virus infection at a late stage in the virus life cycle. An alteration in influenza virus morphology and viral ribonucleoprotein (vRNP) localization was observed as an effect of papaverine treatment. Papaverine is a well-known phosphodiesterase inhibitor and also modifies the mitogen-activated protein kinase (MAPK) pathway by downregulating the phosphorylation of MEK and extracellular signal-regulated kinase (ERK). Thus, the modulation of host cell signaling pathways by papaverine may be associated with the nuclear retention of vRNPs and the reduction of influenza virus titers. Interestingly, papaverine also inhibited paramyxoviruses parainfluenza virus 5 (PIV5), human parainfluenza virus 3 (HPIV3), and respiratory syncytial virus (RSV) infections. We propose that papaverine can be a potential candidate to be used as an antiviral agent against a broad range of influenza viruses and paramyxoviruses. IMPORTANCE Influenza viruses are important human pathogens that are the causative agents of epidemics and pandemics. Despite the availability of an annual vaccine, a large number of cases occur every year globally. Here, we report that papaverine, a vasodilator, shows inhibitory action against various strains of influenza virus as well as the paramyxoviruses PIV5, HPIV3, and RSV. A significant effect of papaverine on the influenza virus morphology was observed. Papaverine treatment of influenza-virus-infected cells resulted in the inhibition of virus at a later time in the virus life cycle through the suppression of nuclear export of vRNP and also interfered with the host cellular cAMP and MEK/ERK cascade pathways. This study explores the use of papaverine as an effective inhibitor of both influenza viruses as well as paramyxoviruses.

2014 ◽  
Vol 89 (5) ◽  
pp. 2792-2800 ◽  
Author(s):  
Joseph Ashour ◽  
Florian I. Schmidt ◽  
Leo Hanke ◽  
Juanjo Cragnolini ◽  
Marco Cavallari ◽  
...  

ABSTRACTPerturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle.IMPORTANCEMany proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.


2010 ◽  
Vol 7 (6) ◽  
pp. 427-439 ◽  
Author(s):  
Tokiko Watanabe ◽  
Shinji Watanabe ◽  
Yoshihiro Kawaoka

2016 ◽  
Vol 90 (23) ◽  
pp. 10906-10914 ◽  
Author(s):  
James Kirui ◽  
Arindam Mondal ◽  
Andrew Mehle

ABSTRACTThe influenza A virus polymerase plays an essential role in the virus life cycle, directing synthesis of viral mRNAs and genomes. It is a trimeric complex composed of subunits PA, PB1, and PB2 and associates with viral RNAs and nucleoprotein (NP) to form higher-order ribonucleoprotein (RNP) complexes. The polymerase is regulated temporally over the course of infection to ensure coordinated expression of viral genes as well as replication of the viral genome. Various host factors and processes have been implicated in regulation of the IAV polymerase function, including posttranslational modifications; however, the mechanisms are not fully understood. Here we demonstrate that ubiquitination plays an important role in stimulating polymerase activity. We show that all protein subunits in the RNP are ubiquitinated, but ubiquitination does not significantly alter protein levels. Instead, ubiquitination and an active proteasome enhance polymerase activity. Expression of ubiquitin upregulates polymerase function in a dose-dependent fashion, causing increased accumulation of viral RNA (vRNA), cRNA, and mRNA and enhanced viral gene expression during infection. Ubiquitin expression directly affects polymerase activity independent of nucleoprotein (NP) or ribonucleoprotein (RNP) assembly. Ubiquitination and the ubiquitin-proteasome pathway play key roles during multiple stages of influenza virus infection, and data presented here now demonstrate that these processes modulate viral polymerase activity independent of protein degradation.IMPORTANCEThe cellular ubiquitin-proteasome pathway impacts steps during the entire influenza virus life cycle. Ubiquitination suppresses replication by targeting viral proteins for degradation and stimulating innate antiviral signaling pathways. Ubiquitination also enhances replication by facilitating viral entry and virion disassembly. We identify here an addition proviral role of the ubiquitin-proteasome system, showing that all of the proteins in the viral replication machinery are subject to ubiquitination and this is crucial for optimal viral polymerase activity. Manipulation of the ubiquitin machinery for therapeutic benefit is therefore likely to disrupt the function of multiple viral proteins at stages throughout the course of infection.


2021 ◽  
Author(s):  
Yansheng Li ◽  
Mingkai Xu ◽  
Yongqiang Li ◽  
Wu Gu ◽  
Gulinare Halimu ◽  
...  

Influenza pandemic poses public health threats annually for lacking vaccine which provides cross-protection against novel and emerging influenza viruses. Combining conserved antigens inducing cross-protective antibody response with epitopes activating cross-protective cytotoxic T-cells would offer an attractive strategy for developing universal vaccine. In this study, we constructed a recombinant protein NMHC consisting of influenza viral conserved epitopes and superantigen fragment. NMHC promoted the mature of bone marrow-derived dendritic cells and induced CD4+ T cells to differentiate into Th1, 32 Th2 and Th17 subtypes. Mice vaccinated with NMHC produced high level of immunoglobulins which cross-bound to HA fragments from six influenza virus subtypes with high antibody titers. Anti-NMHC serum showed potent hemagglutinin inhibition effects to highly divergent group 1 (H1 subtypes) and group 2 (H3 subtype) influenza virus strains. And purified anti-NMHC antibodies could bind to multiple HAs with high affinities. NMHC vaccination effectively protected the mice from infection and lung damage challenged by two subtypes of H1N1 influenza virus. Moreover, NMHC vaccination elicited CD4+ and CD8+ T-cell responses to clear the virus from infected tissue and prevent virus spreading. In conclusion, this study provided proof of concept for triggering both B cells and T cells immune responses against multiple influenza virus infection, and NMHC may be a potential candidate of universal broad-spectrum vaccine for various influenza virus prevention and therapy.


2016 ◽  
Vol 90 (7) ◽  
pp. 3661-3675 ◽  
Author(s):  
Sathya N. Thulasi Raman ◽  
Guanqun Liu ◽  
Hyun Mi Pyo ◽  
Ya Cheng Cui ◽  
Fang Xu ◽  
...  

ABSTRACTDDX3 belongs to the DEAD box RNA helicase family and is a multifunctional protein affecting the life cycle of a variety of viruses. However, its role in influenza virus infection is unknown. In this study, we explored the potential role of DDX3 in influenza virus life cycle and discovered that DDX3 is an antiviral protein. Since many host proteins affect virus life cycle by interacting with certain components of the viral machinery, we first verified whether DDX3 has any viral interaction partners. Immunoprecipitation studies revealed NS1 and NP as direct interaction partners of DDX3. Stress granules (SGs) are known to be antiviral and do form in influenza virus-infected cells expressing defective NS1 protein. Additionally, a recent study showed that DDX3 is an important SG-nucleating factor. We thus explored whether DDX3 plays a role in influenza virus infection through regulation of SGs. Our results showed that SGs were formed in infected cells upon infection with a mutant influenza virus lacking functional NS1 (del NS1) protein, and DDX3 colocalized with NP in SGs. We further determined that the DDX3 helicase domain did not interact with NS1 and NP; however, it was essential for DDX3 localization in virus-induced SGs. Knockdown of DDX3 resulted in impaired SG formation and led to increased virus titers. Taken together, our results identified DDX3 as an antiviral protein with a role in virus-induced SG formation.IMPORTANCEDDX3 is a multifunctional RNA helicase and has been reported to be involved in regulating various virus life cycles. However, its function during influenza A virus infection remains unknown. In this study, we demonstrated that DDX3 is capable of interacting with influenza virus NS1 and NP proteins; DDX3 and NP colocalize in the del NS1 virus-induced SGs. Furthermore, knockdown of DDX3 impaired SG formation and led to a decreased virus titer. Thus, we provided evidence that DDX3 is an antiviral protein during influenza virus infection and its antiviral activity is through regulation of SG formation. Our findings provide knowledge about the function of DDX3 in the influenza virus life cycle and information for future work on manipulating the SG pathway and its components to fight influenza virus infection.


2013 ◽  
Vol 94 (5) ◽  
pp. 977-984 ◽  
Author(s):  
Rey Predicala ◽  
Yan Zhou

Influenza A virus vRNP nuclear export is CRM1-dependent. Ran-binding protein 3 (RanBP3) is a Ran-interacting protein that is best known for its role as a cofactor of CRM1-mediated cargo nuclear export. In this study, we investigated the role of RanBP3 during the influenza A virus life cycle. We found that RanBP3 was phosphorylated at Ser58 in the early and late phases of infection. Knockdown of RanBP3 expression led to vRNP nuclear retention, suggesting that RanBP3 is involved in vRNP nuclear export. Moreover, we demonstrated that the function of RanBP3 during vRNP nuclear export is regulated by phosphorylation at Ser58, and that RanBP3 phosphorylation is modulated by both PI3K/Akt and Ras/ERK/RSK pathways in the late phase of viral infection.


2017 ◽  
Vol 13 (3) ◽  
Author(s):  
Rafał Filip ◽  
Jacek Leluk

AbstractHemagglutinin (HA) is a surface glycoprotein found in influenza viruses. This particle plays two crucial functions in the viral life cycle: it allows for the attachment of the virus into the host cell and participates in the fusion of the virus and host membranes. There are 18 different subtypes of HA. Recently, the H17 and H18 strains have been discovered whose hosts were bats. The evolution of these two strains had most likely occurred in isolation for a long period of time. This work presents the phylogenetic analysis and study on mutational variability based on sequences from all 18 currently known HA strains belonging to influenza virus type A. The results have been presented regarding the current knowledge about influenza. The classical software (Clustal, PHYLIP, and ConSurf) as well as original applications (SSSSg and Consensus Constructor) have been used in this research.


2015 ◽  
Vol 89 (24) ◽  
pp. 12319-12329 ◽  
Author(s):  
Sarah L. Londrigan ◽  
Kirsty R. Short ◽  
Joel Ma ◽  
Leah Gillespie ◽  
Steven P. Rockman ◽  
...  

ABSTRACTAirway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle.IMPORTANCESeasonal influenza A viruses (IAV) and highly pathogenic avian influenza viruses (HPAI) infect macrophages, but only HPAI replicate productively in these cells. Herein, we demonstrate that impaired virus uptake into macrophages represents one level of restriction limiting infection by seasonal IAV. Following uptake, seasonal IAV do not complete productive replication in macrophages, representing a second level of restriction. Using murine macrophages, we demonstrate that productive infection is blocked late in the virus life cycle, such that virus assembly is defective and newly synthesized virions are not released. These studies represent an important step toward identifying host-encoded factors that block replication of seasonal IAV, but not HPAI, in macrophages.


1996 ◽  
Vol 40 (5) ◽  
pp. 1189-1193 ◽  
Author(s):  
J E Tomassini ◽  
M E Davies ◽  
J C Hastings ◽  
R Lingham ◽  
M Mojena ◽  
...  

A novel anti-influenza virus compound, flutimide, was identified in extracts of a recently identified fungal species, Delitschia confertaspora (F. Pelaez, J.D. Polishook, M. Valldosera, and J.Guarro, Mycotaxon 50:115-122, 1994). The compound, a substituted 2,6-diketopiperazine, selectively inhibited the cap-dependent transcriptase of influenza A and B viruses and had no effect on the activities of other polymerases. Similar to the 4-substituted 2,4-dioxobutanoic acids, a series of transcriptase inhibitors which we described previously (J. Tomassini, H. Selnick, M.E. Davies, M.E. Armstrong, J. Baldwin, M. Bourgeois, J.Hastings, D. Hazuda, J. Lewis, W. McClements, G. Ponticello, E. Radzilowski, G. Smith, A. Tebben, and A. Wolfe, Antimicrob. Agents Chemother. 38:2827-2837, 1994), this inhibitor, which is a natural product, affected neither the initiation nor the elongation of influenza virus mRNA synthesis, but it specifically targeted the cap-dependent endonuclease of the transcriptase. Additionally, the compound was inhibitory to the replication of influenza A and B viruses in cell culture. The selective antiviral properties of this compound further demonstrate the utility of influenza virus endonuclease as a target of antiviral agents.


Sign in / Sign up

Export Citation Format

Share Document