scholarly journals Mapping the Heterogeneity of Histone Modifications on Hepatitis B Virus DNA Using Liver Needle Biopsies Obtained from Chronically Infected Patients

2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Tobias Flecken ◽  
Marie-Anne Meier ◽  
Peter Skewes-Cox ◽  
David T. Barkan ◽  
Markus H. Heim ◽  
...  

ABSTRACTCovalently closed circular DNA (cccDNA) forms the basis for replication and persistence of hepatitis B virus (HBV) in the chronically infected liver. We have previously shown that viral transcription is subject to regulation by posttranslational modifications (PTMs) of histone proteins bound to cccDNA through analysis ofde novoHBV-infected cell lines. We now report the successful adaptation of this chromatin immunoprecipitation sequencing (ChIPseq) approach for analysis of fine-needle patient liver biopsy specimens to investigate the role of histone PTMs in chronically HBV-infected patients. Using 18 specimens from patients in different stages of chronic HBV infection, our work shows that the profile of histone PTMs in chronic infection is more nuanced than previously observed inin vitromodels of acute infection. In line with our previous findings, we find that the majority of HBV-derived sequences are associated with the activating histone PTM H3K4me3. However, we show a striking interpatient variability of its deposition in this patient cohort correlated with viral transcription and patient HBV early antigen (HBeAg) status. Unexpectedly, we detected deposition of the classical inhibitory histone PTM H3K9me3 on HBV-DNA in around half of the patient biopsy specimens, which could not be linked to reduced levels of viral transcripts. Our results show that currentin vitromodels are unable to fully recapitulate the complex epigenetic landscape of chronic HBV infection observedin vivoand demonstrate that fine-needle liver biopsy specimens can provide sufficient material to further investigate the interaction of viral and host proteins on HBV-DNA.IMPORTANCEHepatitis B virus (HBV) is a major global health concern, chronically infecting millions of patients and contributing to a rising burden of liver disease. The viral genome forms the basis for chronic infection and has been shown to be subject to regulation by epigenetic mechanisms, such as posttranslational modification of histone proteins. Here, we confirm and expand on previous results by adapting a high-resolution technique for analysis of histone modifications for use with patient-derived fine-needle liver biopsy specimens. Our work highlights that the situationin vivois more complex than predicted by currentin vitromodels, for example, by suggesting a novel, noncanonical role of the histone modification H3K9me3 in the HBV life cycle. Importantly, enabling the use of fine-needle liver biopsy specimens for such high-resolution analyses may facilitate further research into the epigenetic regulation of the HBV genome.

1998 ◽  
Vol 18 (3) ◽  
pp. 1562-1569 ◽  
Author(s):  
Izhak Haviv ◽  
Meir Shamay ◽  
Gilad Doitsh ◽  
Yosef Shaul

ABSTRACT pX, the hepatitis B virus (HBV)-encoded regulator, coactivates transcription through an unknown mechanism. pX interacts with several components of the transcription machinery, including certain activators, TFIIB, TFIIH, and the RNA polymerase II (POLII) enzyme. We show that pX localizes in the nucleus and coimmunoprecipitates with TFIIB from nuclear extracts. We used TFIIB mutants inactive in binding either POLII or TATA binding protein to study the role of TFIIB-pX interaction in transcription coactivation. pX was able to bind the former type of TFIIB mutant and not the latter. Neither of these sets of TFIIB mutants supports transcription. Remarkably, the latter TFIIB mutants fully block pX activity, suggesting the role of TFIIB in pX-mediated coactivation. By contrast, in the presence of pX, TFIIB mutants with disrupted POLII binding acquire the wild-type phenotype, both in vivo and in vitro. These results suggest that pX may establish the otherwise inefficient TFIIB mutant-POLII interaction, by acting as a molecular bridge. Collectively, our results demonstrate that TFIIB is the in vivo target of pX.


1989 ◽  
Vol 29 (4) ◽  
pp. 244-248 ◽  
Author(s):  
Hideaki Haritani ◽  
Toshikazu Uchida ◽  
Yasunori Okuda ◽  
Toshio Shikata

2014 ◽  
Vol 157 ◽  
pp. 62-68 ◽  
Author(s):  
Sheng Liu ◽  
Wanxing Wei ◽  
Yubin Li ◽  
Xing Lin ◽  
Kaichuang Shi ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3475 ◽  
Author(s):  
Si-Xin Huang ◽  
Jun-Fei Mou ◽  
Qin Luo ◽  
Qing-Hu Mo ◽  
Xian-Li Zhou ◽  
...  

Coumarins are widely present in a variety of plants and have a variety of pharmacological activities. In this study, we isolated a coumarin compound from Microsorium fortunei (Moore) Ching; the compound was identified as esculetin by hydrogen and carbon spectroscopy. Its anti-hepatitis B virus (HBV) activity was investigated in vitro and in vivo. In the human hepatocellular liver carcinoma 2.2.15 cell line (HepG2.2.15) transfected with HBV, esculetin effecting inhibited the expression of the HBV antigens and HBV DNA in vitro. Esculetin inhibited the expression of Hepatitis B virus X (HBx) protein in a dose-dependent manner. In the ducklings infected with duck hepatitis B virus (DHBV), the levels of DHBV DNA, duck hepatitis B surface antigen (DHBsAg), duck hepatitis B e-antigen (DHBeAg), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) decreased significantly after esculetin treatment. Summing up the above, the results suggest that esculetin efficiently inhibits HBV replication both in vitro and in vivo, which provides an opportunity for further development of esculetin as antiviral drug.


2001 ◽  
Vol 34 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Béatrice Seignères ◽  
Stéphanie Aguesse-Germon ◽  
Christian Pichoud ◽  
Isabelle Vuillermoz ◽  
Catherine Jamard ◽  
...  

2020 ◽  
Vol 110 ◽  
pp. 254-265
Author(s):  
Leonardo Rojas-Sánchez ◽  
Ejuan Zhang ◽  
Viktoriya Sokolova ◽  
Maohua Zhong ◽  
Hu Yan ◽  
...  

2014 ◽  
Vol 155 (2) ◽  
pp. 1061-1067 ◽  
Author(s):  
Sheng Liu ◽  
Wanxing Wei ◽  
Kaichuang Shi ◽  
Xun Cao ◽  
Min Zhou ◽  
...  

1996 ◽  
Vol 40 (5) ◽  
pp. 1180-1185 ◽  
Author(s):  
G Civitico ◽  
T Shaw ◽  
S Locarnini

Safe and effective treatments for chronic hepatitis B virus (HBV) infection have yet to be developed. Both ganciclovir (9-[1,3-dihydroxy-2-propoxymethyl]guanine) and foscarnet (trisodium phosphonoformate hexahydrate) are potent inhibitors of hepadnavirus replication when used individually in vitro and in vivo. However, the clinical usefulness of each drug is reduced by dose-limiting toxicity, especially during long-term monotherapy. Here we demonstrate additive inhibition of duck HBV DNA replication in cultures of primary duck hepatocytes congenitally infected with duck HBV by combinations of ganciclovir and foscarnet at low, clinically achievable concentrations. These results suggest that the effects of ganciclovir and foscarnet against HBV may be additive in vivo.


2002 ◽  
Vol 46 (8) ◽  
pp. 2525-2532 ◽  
Author(s):  
S. Levine ◽  
D. Hernandez ◽  
G. Yamanaka ◽  
S. Zhang ◽  
R. Rose ◽  
...  

ABSTRACT Entecavir (ETV) is a potent and selective inhibitor of hepatitis B virus (HBV) replication in vitro and in vivo that is currently in clinical trials for the treatment of chronic HBV infections. A major limitation of the current HBV antiviral therapy, lamivudine (3TC), is the emergence of drug-resistant HBV in a majority of treated patients due to specific mutations in the nucleotide binding site of HBV DNA polymerase (HBV Pol). To determine the effects of 3TC resistance mutations on inhibition by ETV triphosphate (ETV-TP), a series of in vitro studies were performed. The inhibition of wild-type and 3TC-resistant HBV Pol by ETV-TP was measured using recombinant HBV nucleocapsids, and compared to that of 3TC-TP. These enzyme inhibition studies demonstrated that ETV-TP is a highly potent inhibitor of wild-type HBV Pol and is 100- to 300-fold more potent than 3TC-TP against 3TC-resistant HBV Pol. Cell culture assays were used to gauge the potential for antiviral cross-resistance of 3TC-resistant mutants to ETV. Results demonstrated that ETV inhibited the replication of 3TC-resistant HBV, but 20- to 30-fold higher concentrations were required. To gain further perspective regarding the potential therapeutic use of ETV, its phosphorylation was examined in hepatoma cells treated with extracellular concentrations representative of drug levels in plasma in ETV-treated patients. At these concentrations, intracellular ETV-TP accumulated to levels expected to inhibit the enzyme activity of both wild-type and 3TC-resistant HBV Pol. These findings are predictive of potent antiviral activity of ETV against both wild-type and 3TC-resistant HBV.


Sign in / Sign up

Export Citation Format

Share Document