scholarly journals Correction for Chen et al., Bindarit, an Inhibitor of Monocyte Chemotactic Protein Synthesis, Protects against Bone Loss Induced by Chikungunya Virus Infection

2015 ◽  
Vol 89 (23) ◽  
pp. 12232-12232 ◽  
Author(s):  
Weiqiang Chen ◽  
Suan-Sin Foo ◽  
Adam Taylor ◽  
Aleksei Lulla ◽  
Andres Merits ◽  
...  
2011 ◽  
Vol 204 (7) ◽  
pp. 1026-1030 ◽  
Author(s):  
Nestor E. Rulli ◽  
Michael S. Rolph ◽  
Anon Srikiatkhachorn ◽  
Surapee Anantapreecha ◽  
Angelo Guglielmotti ◽  
...  

2014 ◽  
Vol 89 (1) ◽  
pp. 581-593 ◽  
Author(s):  
Weiqiang Chen ◽  
Suan-Sin Foo ◽  
Adam Taylor ◽  
Aleksei Lulla ◽  
Andres Merits ◽  
...  

ABSTRACTThe recent global resurgence of arthritogenic alphaviruses, in particular chikungunya virus (CHIKV), highlights an urgent need for the development of therapeutic intervention strategies. While there has been significant progress in defining the pathophysiology of alphaviral disease, relatively little is known about the mechanisms involved in CHIKV-induced arthritis or potential therapeutic options to treat the severe arthritic symptoms associated with infection. Here, we used microcomputed tomographic (μCT) and histomorphometric analyses to provide previously undescribed evidence of reduced bone volume in the proximal tibial epiphysis of CHIKV-infected mice compared to the results for mock controls. This was associated with a significant increase in the receptor activator of nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG) ratio in infected murine joints and in the serum of CHIKV patients. The expression levels of the monocyte chemoattractant proteins (MCPs), including MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7, were also highly elevated in joints of CHIKV-infected mice, accompanied by increased cellularity within the bone marrow in tibial epiphysis and ankle joints. Both this effect and CHIKV-induced bone loss were significantly reduced by treatment with the MCP inhibitor bindarit. Collectively, these findings demonstrate a unique role for MCPs in promoting CHIKV-induced osteoclastogenesis and bone loss during disease and suggest that inhibition of MCPs with bindarit may be an effective therapy for patients affected with alphavirus-induced bone loss.IMPORTANCEArthritogenic alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), cause worldwide outbreaks of polyarthritis, which can persist in patients for months following infection. Previous studies have shown that host proinflammatory soluble factors are associated with CHIKV disease severity. Furthermore, it is established that chemokine (C-C motif) ligand 2 (CCL2/MCP-1) is important in cellular recruitment and inducing bone-resorbing osteoclast (OC) formation. Here, we show that CHIKV replicates in bone and triggers bone loss by increasing the RANKL/OPG ratio. CHIKV infection results in MCP-induced cellular infiltration in the inflamed joints, and bone loss can be ameliorated by treatment with an MCP-inhibiting drug, bindarit. Taken together, our data reveal a previously undescribed role for MCPs in CHIKV-induced bone loss: one of recruiting monocytes/OC precursors to joint sites and thereby favoring a pro-osteoclastic microenvironment. This suggests that bindarit may be an effective treatment for alphavirus-induced bone loss and arthritis in humans.


2007 ◽  
Vol 13 (3) ◽  
pp. 509-510 ◽  
Author(s):  
Julian D. Druce ◽  
Douglas F. Johnson ◽  
Thomas Tran ◽  
Michael J. Richards ◽  
Christopher J. Birch

2020 ◽  
Vol 101 ◽  
pp. 489
Author(s):  
B.R. Wimalasiri-Yapa ◽  
F. Frentiu ◽  
L. Stassen ◽  
R. Gumiel

2005 ◽  
Vol 289 (4) ◽  
pp. H1669-H1675 ◽  
Author(s):  
John P. Cullen ◽  
Shariq Sayeed ◽  
Ying Jin ◽  
Nicholas G. Theodorakis ◽  
James V. Sitzmann ◽  
...  

The aim of this study was to determine the effect of ethanol (EtOH) on endothelial monocyte chemotactic protein-1 (MCP-1) expression. IL-1β increased the production of MCP-1 by human umbilical vein endothelial cells from undetectable levels to ∼900 pg/ml at 24 h. EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 secretion as determined by ELISA: 25 ± 1%, 35 ± 7%, and 65 ± 5% inhibition for 1, 10, and 100 mM EtOH, respectively, concomitant with inhibition of monocyte adhesion to activated endothelial cells. Similarly, EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 mRNA expression. Experiments with actinomycin D demonstrated that EtOH decreased the stability of MCP-1 mRNA. In addition, EtOH significantly reduced NF-κB and AP-1 binding activity induced by IL-1β and inhibited MCP-1 gene transcription. Binding of 125I-labeled MCP-1 to its receptor (CCR2) on THP-1 human monocytic cells was not affected by EtOH treatment. Modulation of the expression of MCP-1 represents a mechanism whereby EtOH could inhibit atherogenesis by blocking the crucial early step of monocyte adhesion and subsequent recruitment to the subendothelial space. These actions of EtOH may underlie, in part, its cardiovascular protective effects in vivo.


Sign in / Sign up

Export Citation Format

Share Document