scholarly journals Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Erica L. Sanchez ◽  
Thomas H. Pulliam ◽  
Terri A. Dimaio ◽  
Angel B. Thalhofer ◽  
Tracie Delgado ◽  
...  

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors.

2006 ◽  
Vol 80 (5) ◽  
pp. 2234-2242 ◽  
Author(s):  
Xuezhong Cai ◽  
Bryan R. Cullen

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 11 distinct microRNAs, all of which are found clustered within the major latency-associated region of the KSHV genome in the same transcriptional orientation. Because the KSHV microRNAs are all expressed in latently infected cells and are largely unaffected by induction of lytic replication, it appeared probable that they would be processed out of KSHV transcripts that are derived from a latent promoter(s) present in this region. Here, we define three latent transcripts, derived from two distinct KSHV latent promoters, that function as both KSHV primary microRNA precursors and as kaposin pre-mRNAs. These activities require the readthrough of a leaky viral polyadenylation signal located at nucleotide 122070 in the KSHV genome. In contrast, recognition of this polyadenylation signal gives rise to previously identified mRNAs that encode the KSHV open reading frames (ORFs) 71, 72 and 73 proteins as well as a novel unspliced KSHV mRNA that encodes only ORF72 and ORF71. Thus, transcripts initiating at the two latent promoters present in the KSHV latency-associated region can undergo two entirely distinct fates, i.e., processing to give a kaposin mRNA and viral microRNAs on the one hand or expression as KSHV ORF71, ORF72, or ORF73 mRNAs on the other, depending on whether the viral polyadenylation site located at position 122070 is ignored or recognized, respectively.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S9-S10
Author(s):  
Brooklyn McGrew ◽  
Aman Shrivastava ◽  
Philip Fernandes ◽  
Lubaina Ehsan ◽  
Yash Sharma ◽  
...  

Abstract Background Candidate markers for Crohn’s Disease (CD) may be identified via gene expression-based construction of metabolic networks (MN). These can computationally describe gene-protein-reaction associations for entire tissues and also predict the flux of reactions (rate of turnover of specific molecules via a metabolic pathway). Recon3D is the most comprehensive human MN to date. We used publicly available CD transcriptomic data along with Recon3D to identify metabolites as potential diagnostic and prognostic biomarkers. Methods Terminal ileal gene expression profiles (36,372 genes; 218 CD. 42 controls) from the RISK cohort (Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid Disease Progression in Children with Crohn’s Disease) and their transcriptomic abundances were used. Recon3D was pruned to only include RISK dataset transcripts which determined metabolic reaction linkage with transcriptionally active genes. Flux balance analysis (FBA) was then run using RiPTiDe with context specific transcriptomic data to further constrain genes (Figure 1). RiPTiDe was independently run on transcriptomic data from both CD and controls. From the pruned and constricted MN obtained, reactions were extracted for further analysis. Results After applying the necessary constraints to modify Recon3D, 527 CD and 537 control reactions were obtained. Reaction comparison with a publicly available list of healthy small intestinal epithelial reactions (n=1282) showed an overlap of 80 CD and 84 control reactions. These were then further grouped based on their metabolic pathways. RiPTiDe identified context specific metabolic pathway activity without supervision and the percentage of forward, backward, and balanced reactions for each metabolic pathway (Figure 2). The metabolite concentrations in the small intestine was altered among CD patients. Notably, the citric acid cycle and malate-aspartate shuttle were affected, highlighting changes in mitochondrial metabolic pathways. This is illustrated by changes in the number of reactions at equilibrium between CD and control. Conclusions The results are relevant as cytosolic acetyl-CoA is needed for fatty acid synthesis and is obtained by removing citrate from the citric acid cycle. An intermediate removal from the cycle has significant cataplerotic effects. The malate-aspartate shuttle also allows electrons to move across the impermeable membrane in the mitochondria (fatty acid synthesis location). These findings are reported by previously published studies where gene expression for fatty acid synthesis is altered in CD patients along with mitochondrial metabolic pathway changes, resulting in altered cell homeostasis. In-depth analysis is currently underway with our work supporting the utility of potential metabolic biomarkers for CD diagnosis, management and improved care.


2014 ◽  
Vol 58 (8) ◽  
pp. 4773-4781 ◽  
Author(s):  
Nanhua Chen ◽  
Alexis N. LaCrue ◽  
Franka Teuscher ◽  
Norman C. Waters ◽  
Michelle L. Gatton ◽  
...  

ABSTRACTArtemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways inP. falciparumduring dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.


2003 ◽  
Vol 77 (11) ◽  
pp. 6474-6481 ◽  
Author(s):  
Jill T. Bechtel ◽  
Yuying Liang ◽  
Joshua Hvidding ◽  
Don Ganem

ABSTRACT Difficulties in efficiently propagating Kaposi's sarcoma-associated herpesvirus (KSHV) in culture have generated the impression that the virus displays a narrow host range. Here we show that, contrary to expectation, KSHV can establish latent infection in many adherent cell lines, including human and nonhuman cells of epithelial, endothelial, and mesenchymal origin. (Paradoxically, the only lines in which we have not observed successful latent infection are cultured lymphoma cell lines.) In most latently infected lines, spontaneous lytic replication is rare and (with only two exceptions) is not efficiently induced by phorbol ester treatment—a result that explains the failure of most earlier studies to observe efficient serial transfer of infection. However, ectopic expression of the KSHV lytic switch protein RTA from an adenoviral vector leads to the prompt induction of lytic replication in all latently infected lines, with the production of infectious KSHV virions. These results indicate (i) that the host cell receptor(s) and entry machinery for KSHV are widely distributed on cultured adherent cells, (ii) that latency is the default pathway of infection, and (iii) that blocks to lytic induction are frequent and largely reside at or upstream of the expression of KSHV RTA.


2015 ◽  
Vol 89 (9) ◽  
pp. 4918-4931 ◽  
Author(s):  
Joseph Gillen ◽  
Wenwei Li ◽  
Qiming Liang ◽  
Denis Avey ◽  
Jianjun Wu ◽  
...  

ABSTRACTThe ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication.


2016 ◽  
Vol 90 (17) ◽  
pp. 7657-7666 ◽  
Author(s):  
Zhigang Zhang ◽  
Wuguo Chen ◽  
Marcia K. Sanders ◽  
Kevin F. Brulois ◽  
Dirk P. Dittmer ◽  
...  

ABSTRACTThe K1 gene product of Kaposi's sarcoma-associated herpesvirus (KSHV) is encoded by the first open reading frame (ORF) of the viral genome. To investigate the role of the K1 gene during the KSHV life cycle, we constructed a set of recombinant viruses that contained either wild-type (WT) K1, a deleted K1 ORF (KSHVΔK1), stop codons within the K1 ORF (KSHV-K15×STOP), or a revertant K1 virus (KSHV-K1REV). We report that the recombinant viruses KSHVΔK1 and KSHV-K15×STOPdisplayed significantly reduced lytic replication compared to WT KSHV and KSHV-K1REVupon reactivation from latency. Additionally, cells infected with the recombinant viruses KSHVΔK1 and KSHV-K15×STOPalso yielded smaller amounts of infectious progeny upon reactivation than did WT KSHV- and KSHV-K1REV-infected cells. Upon reactivation from latency, WT KSHV- and KSHV-K1REV-infected cells displayed activated Akt kinase, as evidenced by its phosphorylation, while cells infected with viruses deleted for K1 showed reduced phosphorylation and activation of Akt kinase. Overall, our results suggest that K1 plays an important role during the KSHV life cycle.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies, and KSHV K1 is a signaling protein that has been shown to be involved in cellular transformation and to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. In order to investigate the role of the K1 protein in the life cycle of KSHV, we constructed recombinant viruses that were deficient for K1. We found that K1 deletion viruses displayed reduced lytic replication compared to the WT virus and also yielded smaller numbers of infectious progeny. We report that K1 plays an important role in the life cycle of KSHV.


2004 ◽  
Vol 78 (22) ◽  
pp. 12566-12575 ◽  
Author(s):  
William Stedman ◽  
Zhong Deng ◽  
Fang Lu ◽  
Paul M. Lieberman

ABSTRACT The viral genome of Kaposi's sarcoma-associated herpesvirus (KSHV) persists as an extrachromosomal plasmid in latently infected cells. The KSHV latency-associated nuclear antigen (LANA) stimulates plasmid maintenance and DNA replication by binding to an ∼150-bp region within the viral terminal repeats (TR). We have used chromatin immunoprecipitation assays to demonstrate that LANA binds specifically to the replication origin sequence within the KSHV TR in latently infected cells. The latent replication origin within the TR was also bound by LANA-associated proteins CBP, double-bromodomain-containing protein 2 (BRD2), and the origin recognition complex 2 protein (ORC2) and was enriched in hyperacetylated histones H3 and H4 relative to other regions of the latent genome. Cell cycle analysis indicated that the minichromosome maintenance complex protein, MCM3, bound TR in late-G1/S-arrested cells, which coincided with the loss of histone H3 K4 methylation. Micrococcal nuclease studies revealed that TRs are embedded in a highly ordered nucleosome array that becomes disorganized in late G1/S phase. ORC binding to TR was LANA dependent when reconstituted in transfected plasmids. DNA affinity purification confirmed that LANA, CBP, BRD2, and ORC2 bound TR specifically and identified the histone acetyltransferase HBO1 (histone acetyltransferase binding to ORC1) as a potential TR binding protein. Disruption of ORC2, MCM5, and HBO1 expression by small interfering RNA reduced LANA-dependent DNA replication of TR-containing plasmids. These findings are the first demonstration that cellular replication and origin licensing factors are required for KSHV latent cycle replication. These results also suggest that the KSHV latent origin of replication is a unique chromatin environment containing histone H3 hyperacetylation within heterochromatic tandem repeats.


2006 ◽  
Vol 80 (20) ◽  
pp. 10073-10082 ◽  
Author(s):  
Laura A. Adang ◽  
Christopher H. Parsons ◽  
Dean H. Kedes

ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus-8) is frequently tumorigenic in immunocompromised patients. The average intracellular viral copy number within infected cells, however, varies markedly by tumor type. Since the KSHV-encoded latency-associated nuclear antigen (LANA) tethers viral episomes to host heterochromatin and displays a punctate pattern by fluorescence microscopy, we investigated whether accurate quantification of individual LANA dots is predictive of intracellular viral genome load. Using a novel technology that integrates single-cell imaging with flow cytometry, we found that both the number and the summed immunofluorescence of individual LANA dots are directly proportional to the amount of intracellular viral DNA. Moreover, combining viral (immediate early lytic replication and transcription activator [RTA] and late lytic K8.1) and cellular (syndecan-1) staining with image-based flow cytometry, we were also able to rapidly and simultaneously distinguish among cells supporting latent, immediate early lytic, early lytic, late lytic, and a potential fourth “delayed late” category of lytic replication. Applying image-based flow cytometry to KSHV culture models, we found that de novo infection results in highly varied levels of intracellular viral load and that lytic induction of latently infected cells likewise leads to a heterogeneous population at various stages of reactivation. These findings additionally underscore the potential advantages of studying KSHV biology with high-throughput analysis of individual cells.


2021 ◽  
Author(s):  
Su-Kyung Kang ◽  
Yun Hee Kang ◽  
Seung-Min Yoo ◽  
Changhoon Park ◽  
Hong Seok Kim ◽  
...  

Multiple host proteins affect the gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) during latent and lytic replication. The high mobility group box 1 (HMGB1) serves as a highly conserved chromosomal protein inside the cell and a prototypical damage-associated molecular pattern molecule outside the cell. HMGB1 has been shown to play a pathogenic role in viral infectious diseases and to regulate the lytic replication of KSHV. However, its functional effects on the KSHV life cycle in KSHV-infected cells have not been fully elucidated. Here, we explored the role of the intracellular and extracellular HMGB1 in KSHV virion production by employing CRISPR/Cas9-mediated HMGB1 knockout in the KSHV-producing iSLK BAC16 cell line. Intracellular HMGB1 formed complexes with various proteins, and the abundance of HMGB1-interacting proteins changed during latent and lytic replication. Moreover, extracellular HMGB1 was found to enhance lytic replication by phosphorylating JNK. Of note, the expression of viral genes was attenuated during lytic replication in HMGB1- knockout iSLK BAC16 cells, with significantly decreased production of infectious virions compared to that in wild-type cells. Collectively, our results demonstrate that HMGB1 is an important cellular cofactor that affects the generation of infectious KSHV progeny during lytic replication. Author Summary The high mobility group box 1 protein ( HMGB1 ) has many intra- and extracellular biological functions with an intricate role in various diseases. In certain viral infections, HMGB1 affects the viral life cycle and pathogenesis. In this study, we explored the effects of HMGB1 knockout on the production of Kaposi’s sarcoma-associated herpesvirus (KSHV). HMGB1 knockout decreased virion production in KSHV-producing cells by decreasing the expression of viral genes. The processes by which HMGB1 affects KSHV production may occur inside or outside of infected cells. For instance, several cellular and viral proteins interacted with intracellular HMGB1 in a nucleosomal complex; whereas extracellular HMGB1 induced JNK phosphorylation, thus enhancing lytic replication. Our results suggest that both intracellular and extracellular HMGB1 are necessary for efficient KSHV replication. Thus, HMGB1 may represent an effective therapeutic target for the regulation of KSHV production.


Sign in / Sign up

Export Citation Format

Share Document