scholarly journals Ebola Virus VP30 Is an RNA Binding Protein

2007 ◽  
Vol 81 (17) ◽  
pp. 8967-8976 ◽  
Author(s):  
Sinu P. John ◽  
Tan Wang ◽  
Scott Steffen ◽  
Sonia Longhi ◽  
Connie S. Schmaljohn ◽  
...  

ABSTRACT The Ebola virus (EBOV) genome encodes for several proteins that are necessary and sufficient for replication and transcription of the viral RNAs in vitro; NP, VP30, VP35, and L. VP30 acts in trans with an RNA secondary structure upstream of the first transcriptional start site to modulate transcription. Using a bioinformatics approach, we identified a region within the N terminus of VP30 with sequence features that typify intrinsically disordered regions and a putative RNA binding site. To experimentally assess the ability of VP30 to directly interact with the viral RNA, we purified recombinant EBOV VP30 to >90% homogeneity and assessed RNA binding by UV cross-linking and filter-binding assays. VP30 is a strongly acidophilic protein; RNA binding became stronger as pH was decreased. Zn2+, but not Mg2+, enhanced activity. Enhancement of transcription by VP30 requires a RNA stem-loop located within nucleotides 54 to 80 of the leader region. VP30 showed low binding affinity to the predicted stem-loop alone or to double-stranded RNA but showed a good binding affinity for the stem-loop when placed in the context of upstream and downstream sequences. To map the region responsible for interacting with RNA, we constructed, purified, and assayed a series of N-terminal deletion mutations of VP30 for RNA binding. The key amino acids supporting RNA binding activity map to residues 26 to 40, a region rich in arginine. Thus, we show for the first time the direct interaction of EBOV VP30 with RNA and the importance of the N-terminal region for binding RNA.

2021 ◽  
Author(s):  
Vincent D. Maciej ◽  
Nevena Mateva ◽  
Theresa Dittmers ◽  
Sutapa Chakrabarti

The RNA binding protein Tristetraprolin (TTP) is a potent activator of mRNA decay, specifically for transcripts bearing AU-rich elements (AREs) in their 3'-untranslated regions. TTP functions as a mediator for mRNA decay by interacting with the decay machinery and recruiting it to the target ARE-mRNA. In this study, we report a weak, but direct interaction between TTP and the human decapping enzyme DCP2, which impacts the stability of ARE-transcripts. The TTP-DCP2 interaction is unusual as it involves intrinsically disordered regions (IDRs) of both binding partners. We show that the IDR of DCP2 has a propensity for oligomerization and liquid-liquid phase separation (LLPS) in vitro. Binding of TTP to DCP2 leads to its partitioning into phase-separated droplets formed by DCP2, suggesting that molecular crowding might facilitate the weak interaction between the two proteins and enable assembly of a decapping-competent mRNA-protein complex on TTP-bound transcripts in cells. Our studies underline the role of weak interactions in the cellular interaction network and their contribution towards cellular functionality.


2021 ◽  
Author(s):  
Sébastien Campagne ◽  
Tebbe de Vries ◽  
Florian Malard ◽  
Pavel Afanasyev ◽  
Georg Dorn ◽  
...  

Abstract U1 small nuclear ribonucleoparticle (U1 snRNP) plays a central role during RNA processing. Previous structures of U1 snRNP revealed how the ribonucleoparticle is organized and recognizes the pre-mRNA substrate at the exon–intron junction. As with many other ribonucleoparticles involved in RNA metabolism, U1 snRNP contains extensions made of low complexity sequences. Here, we developed a protocol to reconstitute U1 snRNP in vitro using mostly full-length components in order to perform liquid-state NMR spectroscopy. The accuracy of the reconstitution was validated by probing the shape and structure of the particle by SANS and cryo-EM. Using an NMR spectroscopy-based approach, we probed, for the first time, the U1 snRNP tails at atomic detail and our results confirm their high degree of flexibility. We also monitored the labile interaction between the splicing factor PTBP1 and U1 snRNP and validated the U1 snRNA stem loop 4 as a binding site for the splicing regulator on the ribonucleoparticle. Altogether, we developed a method to probe the intrinsically disordered regions of U1 snRNP and map the interactions controlling splicing regulation. This approach could be used to get insights into the molecular mechanisms of alternative splicing and screen for potential RNA therapeutics.


2021 ◽  
pp. mbc.E21-02-0081
Author(s):  
Taro Mannen ◽  
Masato Goto ◽  
Takuya Yoshizawa ◽  
Akio Yamashita ◽  
Tetsuro Hirose ◽  
...  

The mammalian cell nucleus is a highly organized organelle that contains membrane-less structures referred to as nuclear bodies (NBs). Some NBs carry specific RNA types that play architectural roles in their formation. Here, we show two types of RNase-sensitive DBC1-containing NBs: DBC1 nuclear body (DNB) in HCT116 cells and Sam68 nuclear body (SNB) in HeLa cells that exhibit phase-separated features and are constructed using RNA polymerase I or II transcripts in a cell type-specific manner. We identified additional protein components present in DNB by immunoprecipitation-mass spectrometry, some of which (DBC1 and HNRNPL) are required for DNB formation. The rescue experiment using the truncated HNRNPL mutants revealed that two RNA-binding domains and intrinsically disordered regions of HNRNPL play significant roles in DNB formation. All these domains of HNRNPL promote in vitro droplet formation, suggesting the need for multivalent interactions between HNRNPL and RNA as well as proteins in DNB formation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Bonucci ◽  
M. G. Murrali ◽  
L. Banci ◽  
R. Pierattelli

AbstractStructural disorder represents a key feature in the mechanism of action of RNA-binding proteins (RBPs). Recent insights revealed that intrinsically disordered regions (IDRs) linking globular domains modulate their capability to interact with various sequences of RNA, but also regulate aggregation processes, stress-granules formation, and binding to other proteins. The FET protein family, which includes FUS (Fused in Sarcoma), EWG (Ewing Sarcoma) and TAF15 (TATA binding association factor 15) proteins, is a group of RBPs containing three different long IDRs characterized by the presence of RGG motifs. In this study, we present the characterization of a fragment of FUS comprising two RGG regions flanking the RNA Recognition Motif (RRM) alone and in the presence of a stem-loop RNA. From a combination of EPR and NMR spectroscopies, we established that the two RGG regions transiently interact with the RRM itself. These interactions may play a role in the recognition of stem-loop RNA, without a disorder-to-order transition but retaining high dynamics.


2011 ◽  
Vol 286 (22) ◽  
pp. 20065-20077 ◽  
Author(s):  
Dipanjan Dutta ◽  
Shiladitya Chattopadhyay ◽  
Parikshit Bagchi ◽  
Umesh Chandra Halder ◽  
Satabdi Nandi ◽  
...  

Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells.


2015 ◽  
Vol 112 (37) ◽  
pp. 11541-11546 ◽  
Author(s):  
Na Yang ◽  
Zhenyu Yu ◽  
Menglong Hu ◽  
Mingzhu Wang ◽  
Ruth Lehmann ◽  
...  

Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain.


2008 ◽  
Vol 83 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Laura L. Newcomb ◽  
Rei-Lin Kuo ◽  
Qiaozhen Ye ◽  
Yunyun Jiang ◽  
Yizhi Jane Tao ◽  
...  

ABSTRACT The influenza A virus polymerase transcribes and replicates the eight virion RNA (vRNA) segments. Transcription is initiated with capped RNA primers excised from cellular pre-mRNAs by the intrinsic endonuclease of the viral polymerase. Viral RNA replication occurs in two steps: first a full-length copy of vRNA is made, termed cRNA, and then this cRNA is copied to produce vRNA. The synthesis of cRNAs and vRNAs is initiated without a primer, in contrast to the initiation of viral mRNA synthesis, and requires the viral nucleocapsid protein (NP). The mechanism of unprimed viral RNA replication is poorly understood. To elucidate this mechanism, we used purified recombinant influenza virus polymerase complexes and NP to establish an in vitro system that catalyzes the unprimed synthesis of cRNA and vRNA using 50-nucleotide-long RNA templates. The purified viral polymerase and NP are sufficient for catalyzing this RNA synthesis without a primer, suggesting that host cell factors are not required. We used this purified in vitro replication system to demonstrate that the RNA-binding activity of NP is not required for the unprimed synthesis of cRNA and vRNA. This result rules out two models that postulate that the RNA-binding activity of NP mediates the switch from capped RNA-primed transcription to unprimed viral RNA replication. Because we showed that NP lacking RNA-binding activity binds directly to the viral polymerase, it is likely that a direct interaction between NP and the viral polymerase results in a modification of the polymerase in favor of unprimed initiation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vikas A. Tillu ◽  
James Rae ◽  
Ya Gao ◽  
Nicholas Ariotti ◽  
Matthias Floetenmeyer ◽  
...  

AbstractCaveolae are spherically shaped nanodomains of the plasma membrane, generated by cooperative assembly of caveolin and cavin proteins. Cavins are cytosolic peripheral membrane proteins with negatively charged intrinsically disordered regions that flank positively charged α-helical regions. Here, we show that the three disordered domains of Cavin1 are essential for caveola formation and dynamic trafficking of caveolae. Electrostatic interactions between disordered regions and α-helical regions promote liquid-liquid phase separation behaviour of Cavin1 in vitro, assembly of Cavin1 oligomers in solution, generation of membrane curvature, association with caveolin-1, and Cavin1 recruitment to caveolae in cells. Removal of the first disordered region causes irreversible gel formation in vitro and results in aberrant caveola trafficking through the endosomal system. We propose a model for caveola assembly whereby fuzzy electrostatic interactions between Cavin1 and caveolin-1 proteins, combined with membrane lipid interactions, are required to generate membrane curvature and a metastable caveola coat.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shan Lu ◽  
Qiaozhen Ye ◽  
Digvijay Singh ◽  
Yong Cao ◽  
Jolene K. Diedrich ◽  
...  

AbstractThe multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80–90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein’s central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.


Sign in / Sign up

Export Citation Format

Share Document