scholarly journals CDK13, a New Potential Human Immunodeficiency Virus Type 1 Inhibitory Factor Regulating Viral mRNA Splicing

2008 ◽  
Vol 82 (14) ◽  
pp. 7155-7166 ◽  
Author(s):  
Reem Berro ◽  
Caitlin Pedati ◽  
Kylene Kehn-Hall ◽  
Weilin Wu ◽  
Zachary Klase ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Tat is a 14-kDa viral protein that acts as a potent transactivator by binding to the transactivation-responsive region, a structured RNA element located at the 5′ end of all HIV-1 transcripts. Tat transactivates viral gene expression by inducing the phosphorylation of the C-terminal domain of RNA polymerase II through several Tat-activated kinases and by recruiting chromatin-remodeling complexes and histone-modifying enzymes to the HIV-1 long terminal repeat. Histone acetyltransferases, including p300 and hGCN5, not only acetylate histones but also acetylate Tat at lysine positions 50 and 51 in the arginine-rich motif. Acetylated Tat at positions 50 and 51 interacts with a specialized protein module, the bromodomain, and recruits novel factors having this particular domain, such as P/CAF and SWI/SNF. In addition to having its effect on transcription, Tat has been shown to be involved in splicing. In this study, we demonstrate that Tat interacts with cyclin-dependent kinase 13 (CDK13) both in vivo and in vitro. We also found that CDK13 increases HIV-1 mRNA splicing and favors the production of the doubly spliced protein Nef. In addition, we demonstrate that CDK13 acts as a possible restriction factor, in that its overexpression decreases the production of the viral proteins Gag and Env and subsequently suppresses virus production. Using small interfering RNA against CDK13, we show that silencing of CDK13 leads to a significant increase in virus production. Finally, we demonstrate that CDK13 mediates its effect on splicing through the phosphorylation of ASF/SF2.

2006 ◽  
Vol 80 (16) ◽  
pp. 8047-8059 ◽  
Author(s):  
Steffen Wildum ◽  
Michael Schindler ◽  
Jan Münch ◽  
Frank Kirchhoff

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) utilizes Vpu, Env, and Nef to down-modulate its primary CD4 receptor from the cell surface, and this function seems to be critical for the pathogenesis of AIDS. The physiological relevance of CD4 down-modulation, however, is currently not well understood. In the present study, we analyzed the kinetics of CD4 down-modulation and the susceptibility of HIV-1-infected T cells to superinfection using proviral HIV-1 constructs containing individual and combined defects in vpu, env, and nef and expressing red or green fluorescent proteins. T cells infected with HIV-1 mutants containing functional nef genes expressed low surface levels of CD4 from the first moment that viral gene expression became detectable. In comparison, Vpu and Env had only minor to moderate effects on CD4 during later stages of infection. Consistent with these quantitative differences, Nef inhibited superinfection more efficiently than Vpu and Env. Notably, nef alleles from AIDS patients were more effective in preventing superinfection than those derived from a nonprogressor of HIV-1 infection. Our data suggest that protection against X4-tropic HIV-1 superinfection involves both CD4-independent and CD4-dependent mechanisms of HIV-1 Nef. X4 was effectively down-regulated by simian immunodeficiency virus and HIV-2 but not by HIV-1 Nef proteins. Thus, maximal protection seems to involve an as-yet-unknown mechanism that is independent of CD4 or coreceptor down-modulation. Finally, we demonstrate that superinfected primary T cells show enhanced levels of apoptosis. Accordingly, one reason that HIV-1 inhibits CD4 surface expression and superinfection is to prevent premature cell death in order to expand the period of effective virus production.


2008 ◽  
Vol 82 (8) ◽  
pp. 3921-3931 ◽  
Author(s):  
C. M. Exline ◽  
Z. Feng ◽  
C. M. Stoltzfus

ABSTRACT Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3′ splice sites (3′ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3′ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5′ splice site (5′ss) downstream of exon 2 (5′ss D2). Here we show that the mutations within 5′ss D2 that are predicted to lower or increase the affinity of the 5′ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5′ss D2 was not necessary for the effect of 5′ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5′ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5′-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5′ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.


2004 ◽  
Vol 78 (14) ◽  
pp. 7319-7328 ◽  
Author(s):  
Diane M. P. Lawrence ◽  
Linda C. Durham ◽  
Lynnae Schwartz ◽  
Pankaj Seth ◽  
Dragan Maric ◽  
...  

ABSTRACT Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-α). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-α stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/106 cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.


2004 ◽  
Vol 78 (20) ◽  
pp. 11263-11271 ◽  
Author(s):  
Audrey Brussel ◽  
Pierre Sonigo

ABSTRACT The integrated form of human immunodeficiency virus type 1 (HIV-1) DNA is classically considered to be the sole template for viral gene expression. However, several studies have suggested that unintegrated viral DNA species could also support transcription. To determine the contribution of the different species of HIV-1 DNA to viral expression, we first monitored intracellular levels of various HIV-1 DNA and RNA species in a single-round infection assay. We observed that, in comparison to the precocity of HIV-1 DNA synthesis, viral expression was delayed, suggesting that only the HIV-1 DNA species that persist for a sufficient period of time would be transcribed efficiently. We next evaluated the transcriptional activity of the circular forms of HIV-1 DNA bearing two long terminal repeats, since these episomes were reported to exhibit an intrinsic molecular stability. Our results support the notion that these circular species of HIV-1 DNA are naturally transcribed during HIV-1 infection, thereby participating in virus replication.


2003 ◽  
Vol 77 (9) ◽  
pp. 5415-5427 ◽  
Author(s):  
Olivier Rohr ◽  
Dominique Lecestre ◽  
Sylvette Chasserot-Golaz ◽  
Céline Marban ◽  
Dorina Avram ◽  
...  

ABSTRACT The Tat protein of human immunodeficiency virus type 1 (HIV-1) plays a key role as inducer of viral gene expression. We report that Tat function can be potently inhibited in human microglial cells by the recently described nuclear receptor cofactor chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (CTIP2). Overexpression of CTIP2 leads to repression of HIV-1 replication, as a result of inhibition of Tat-mediated transactivation. In contrast, the related CTIP1 was unable to affect Tat function and viral replication. Using confocal microscopy to visualize Tat subcellular distribution in the presence of the CTIPs, we found that overexpression of CTIP2, and not of CTIP1, leads to disruption of Tat nuclear localization and recruitment of Tat within CTIP2-induced nuclear ball-like structures. In addition, our studies demonstrate that CTIP2 colocalizes and associates with the heterochromatin-associated protein HP1α. The CTIP2 protein harbors two Tat and HP1 interaction interfaces, the 145-434 and the 717-813 domains. CTIP2 and HP1α associate with Tat to form a three-protein complex in which the 145-434 CTIP2 domain interacts with the N-terminal region of Tat, while the 717-813 domain binds to HP1. The importance of this Tat binding interface and of Tat subnuclear relocation was confirmed by analysis of CTIP2 deletion mutants. Our findings suggest that inhibition of HIV-1 expression by CTIP2 correlates with recruitment of Tat within CTIP2-induced structures and relocalization within inactive regions of the chromatin via formation of the Tat-CTIP2-HP1α complex. These data highlight a new mechanism of Tat inactivation through subnuclear relocalization that may ultimately lead to inhibition of viral pathogenesis.


1990 ◽  
Vol 172 (4) ◽  
pp. 1035-1042 ◽  
Author(s):  
C D Pauza ◽  
J E Galindo ◽  
D D Richman

High levels of unintegrated viral DNA accumulate during human immunodeficiency virus type 1 (HIV-1) infection of CEM T cells. Reinfection of already infected cells is required to attain these levels and reinfection also promotes the development of HIV-induced cytopathology. Rates of virus production, however, are independent of the accumulation of unintegrated viral DNA. Neutralizing antibody added soon after infection reduced viral DNA levels without appreciably affecting the production of cell-free viral p24 antigen or reverse transcriptase activity. Only 50 pM AZT were required to reduce the accumulation of unintegrated viral DNA by 50% in contrast to the 25 nM required to inhibit virus production by 50%. Cytopathology, as measured by number of syncytia in infected cell cultures, was correlated with highly elevated levels of unintegrated viral DNA. The minimal levels of unintegrated viral DNA present constitutively in the persistently infected HCEM cell line were consonant with the absence of cytopathic effects in these cells. These data demonstrate that inhibiting the reinfection of already infected cells modulates cytopathic HIV-1 infection to a form that is persistent and noncytopathic.


2004 ◽  
Vol 78 (19) ◽  
pp. 10747-10754 ◽  
Author(s):  
Angela Ciuffi ◽  
Gabriela Bleiber ◽  
Miguel Muñoz ◽  
Raquel Martinez ◽  
Corinne Loeuillet ◽  
...  

ABSTRACT Isolated primary human cells from different donors vary in their permissiveness—the ability of cells to be infected and sustain the replication of human immunodeficiency virus type 1 (HIV-1). We used replicating HIV-1 and single-cycle lentivirus vectors in a population approach to identify polymorphic steps during viral replication. We found that phytohemagglutinin-stimulated CD4+ CD45RO+ CD57− T cells from healthy blood donors (n = 128) exhibited a 5.2-log-unit range in virus production. For 20 selected donors representing the spectrum of CD4 T-cell permissiveness, we could attribute up to 42% of the total variance in virus production to entry factors and 48% to postentry steps. Efficacy at key intracellular steps of the replicative cycle (reverse transcription, integration, transcription and splicing, translation, and budding and release) varied from 0.71 to 1.45 log units among donors. However, interindividual differences in transcription efficiency alone accounted for 64 to 83% of the total variance in virus production that was attributable to postentry factors. While vesicular stomatitis virus G protein-mediated fusion was more efficacious than CCR5/CD4 entry, the latter resulted in greater transcriptional activity per proviral copy. The phenotype of provirus transcription was stable over time, indicating that it represents a genetic trait.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1699-1705
Author(s):  
K Kitano ◽  
CN Abboud ◽  
DH Ryan ◽  
SG Quan ◽  
GC Baldwin ◽  
...  

To define the relationship between human immunodeficiency virus type 1 (HIV-1) infection in hematopoietic stem cells and virus production by their progeny, we performed kinetic studies infecting bone marrow (BM) stem cells and culturing them in the presence of hematopoietic growth factors. CD34-positive (CD34+), CD4-negative (CD4-) BM cells were isolated and infected in vitro with the monocytotropic HIV-1JR-FL strain or the laboratory-maintained HTLV-IIIB strain at a high multiplicity of infection. The cells were susceptible to productive infection only with HIV-1JR-FL, and virus production as measured by p24 protein release was markedly increased (more than fivefold) in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3). Macrophage CSF (M-CSF) was less stimulatory and granulocyte CSF (G-CSF) had no effect on virus production. Virus production coincided with proliferation of mononuclear phagocytes but was not related to granulocytic proliferation in G-CSF-treated BM cultures. Although peak virus production from GM-CSF-treated macrophages occurred 2 to 3 weeks after infection, peak virus production in infected stem cells was observed 5 to 6 weeks after. Enhancement in virus production had a more rapid onset when CD34+/CD4- cells were cultured in the presence of both GM-CSF and IL-3 for 7 or 14 days. Under these conditions there was a 10-fold enhancement in virus production after 7 days of preincubation and a 50-fold enhancement after 14 days. These data indicate that while the stem cell compartment may be susceptible to infection with a monocytotropic HIV-1 strain, productive and sustained infection is realized only after macrophage differentiation. The lack of effect of G-CSF on virus production is likely because of the limited effect of this hematopoietin on mononuclear phagocyte generation and function.


2006 ◽  
Vol 87 (6) ◽  
pp. 1613-1623 ◽  
Author(s):  
Andrea Rossi ◽  
Ruma Mukerjee ◽  
Pasquale Ferrante ◽  
Kamel Khalili ◽  
Shohreh Amini ◽  
...  

Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt −80 to nt −68). Here, the physical interaction and a functional consequence of TCF4–Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using in vitro protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266–350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.


2007 ◽  
Vol 81 (20) ◽  
pp. 10914-10923 ◽  
Author(s):  
Guochun Jiang ◽  
Amy Espeseth ◽  
Daria J. Hazuda ◽  
David M. Margolis

ABSTRACT Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we sought cellular mRNAs whose expression was diminished in resting CD4+ T cells of HIV-1-infected patients exposed to VPA. c-Myc was prominent among genes markedly downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in chronically infected cell lines. Chromatin immunoprecipitation (ChIP) assays revealed that c-Myc and HDAC1 are coordinately resident at the HIV-1 long terminal repeat (LTR) promoter and absent from the promoter after VPA treatment in concert with histone acetylation, RNA polymerase II recruitment, and LTR expression. Sequential ChIP assays demonstrated that c-Myc, Sp1, and HDAC1 coexist in the same DNA-protein complex at the HIV promoter. Short hairpin RNA inhibition of c-Myc reduces both c-Myc and HDAC1 occupancy, blocks c-Myc repression of Tat activation, and increases LTR expression. These results expand the understanding of mechanisms that recruit HDAC and maintain the latency of HIV-1, suggesting novel therapeutic approaches against latent proviral HIV infection.


Sign in / Sign up

Export Citation Format

Share Document