scholarly journals Herpes simplex virus 1 reiterated S component sequences (c1) situated between the a sequence and alpha 4 gene are not essential for virus replication.

1985 ◽  
Vol 54 (2) ◽  
pp. 509-514 ◽  
Author(s):  
J Hubenthal-Voss ◽  
B Roizman
2011 ◽  
Vol 85 (19) ◽  
pp. 9945-9955 ◽  
Author(s):  
S. J. Allen ◽  
K. R. Mott ◽  
A. A. Chentoufi ◽  
L. BenMohamed ◽  
S. L. Wechsler ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
pp. e1009950
Author(s):  
Nikhil Sharma ◽  
Chenyao Wang ◽  
Patricia Kessler ◽  
Ganes C. Sen

STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3’ untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING’s antiviral action.


2018 ◽  
Vol 4 (4) ◽  
pp. 36 ◽  
Author(s):  
Maja Cokarić Brdovčak ◽  
Andreja Zubković ◽  
Igor Jurak

Viruses utilize microRNAs (miRNAs) in a vast variety of possible interactions and mechanisms, apparently far beyond the classical understanding of gene repression in humans. Likewise, herpes simplex virus 1 (HSV-1) expresses numerous miRNAs and deregulates the expression of host miRNAs. Several HSV-1 miRNAs are abundantly expressed in latency, some of which are encoded antisense to transcripts of important productive infection genes, indicating their roles in repressing the productive cycle and/or in maintenance/reactivation from latency. In addition, HSV-1 also exploits host miRNAs to advance its replication or repress its genes to facilitate latency. Here, we discuss what is known about the functional interplay between HSV-1 and the host miRNA machinery, potential targets, and the molecular mechanisms leading to an efficient virus replication and spread.


2019 ◽  
Vol 34 (4) ◽  
pp. 386-396 ◽  
Author(s):  
Rongquan Huang ◽  
Xusha Zhou ◽  
Shuqi Ren ◽  
Xianjie Liu ◽  
Zhiyuan Han ◽  
...  

2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Dhong Hyun Lee ◽  
Homayon Ghiasi

ABSTRACT Macrophages are the predominant infiltrate in the corneas of mice that have been ocularly infected with herpes simplex virus 1 (HSV-1). However, very little is known about the relative roles of M1 (classically activated or polarized) and M2 (alternatively activated or polarized) macrophages in ocular HSV-1 infection. To better understand these relationships, we assessed the impact of directed M1 or M2 activation of RAW264.7 macrophages and peritoneal macrophages (PM) on subsequent HSV-1 infection. In both the RAW264.7 macrophage and PM in vitro models, HSV-1 replication in M1 macrophages was markedly lower than in M2 macrophages and unstimulated controls. The M1 macrophages expressed significantly higher levels of 28 of the 32 tested cytokines and chemokines than M2 macrophages, with HSV-1 infection significantly increasing the levels of proinflammatory cytokines and chemokines in the M1 versus the M2 macrophages. To examine the effects of shifting the immune response toward either M1 or M2 macrophages in vivo, wild-type mice were injected with gamma interferon (IFN-γ) DNA or colony-stimulating factor 1 (CSF-1) DNA prior to ocular infection with HSV-1. Virus replication in the eye, latency in trigeminal ganglia (TG), and markers of T cell exhaustion in the TG were determined. We found that injection of mice with IFN-γ DNA, which enhances the development of M1 macrophages, increased virus replication in the eye; increased latency; and also increased CD4, CD8, IFN-γ, and PD-1 transcripts in the TG of latently infected mice. Conversely, injection of mice with CSF-1 DNA, which enhances the development of M2 macrophages, was associated with reduced virus replication in the eye and reduced latency and reduced the levels of CD4, CD8, IFN-γ,and PD-1 transcripts in the TG. Collectively, these results suggest that M2 macrophages directly reduce the levels of HSV-1 latency and, thus, T-cell exhaustion in the TG of ocularly infected mice. IMPORTANCE Our findings demonstrate a novel approach to further reducing HSV-1 replication in the eye and latency in the TG by modulating immune components, specifically, by altering the phenotype of macrophages. We suggest that inclusion of CSF-1 as part of any vaccination regimen against HSV infection to coax responses of macrophages toward an M2, rather than an M1, response may further improve vaccine efficacy against ocular HSV-1 replication and latency.


2011 ◽  
Vol 85 (14) ◽  
pp. 7203-7215 ◽  
Author(s):  
A. C. Haugo ◽  
M. L. Szpara ◽  
L. Parsons ◽  
L. W. Enquist ◽  
R. J. Roller

2018 ◽  
Vol 92 (10) ◽  
Author(s):  
Philipp E. Merkl ◽  
Megan H. Orzalli ◽  
David M. Knipe

ABSTRACTThe initial events after DNA virus infection involve a race between epigenetic silencing of the incoming viral DNA by host cell factors and expression of viral genes. Several host gene products, including the nuclear domain 10 (ND10) components PML (promyelocytic leukemia) and Daxx (death domain-associated protein 6), as well as IFI16 (interferon-inducible protein 16), have been shown to restrict herpes simplex virus 1 (HSV-1) replication. Whether IFI16 and ND10 components work together or separately to restrict HSV-1 replication is not known. To determine the combinatorial effects of IFI16 and ND10 proteins on viral infection, we depleted Daxx or PML in primary human foreskin fibroblasts (HFFs) in the presence or absence of IFI16. Daxx or IFI16 depletion resulted in higherICP0mutant viral yields, and the effects were additive. Surprisingly, small interfering RNA (siRNA) depletion of PML in the HFF cells led to decreased ICP0-null virus replication, while short hairpin RNA (shRNA) depletion led to increased ICP0-null virus replication, arguing that different PML isoforms or PML-related proteins may have restrictive or proviral functions. In normal human cells, viral DNA replication increases expression of all classes of HSV-1 genes. We observed that IFI16 repressed transcription from both parental and progeny DNA genomes. Taken together, our results show that the mechanisms of action of IFI16 and ND10 proteins are independent, at least in part, and that IFI16 exerts restrictive effects on both input and replicated viral genomes. These results raise the potential for distinct mechanisms of action of IFI16 on parental and progeny viral DNA molecules.IMPORTANCEMany human DNA viruses transcribe their genomes and replicate in the nucleus of a host cell, where they exploit the host cell nuclear machinery for their own replication. Host factors attempt to restrict viral replication by blocking such events, and viruses have evolved mechanisms to neutralize the host restriction factors. In this study, we provide information about the mechanisms of action of three host cell factors that restrict replication of herpes simplex virus (HSV). We found that these factors function independently and that one acts to restrict viral transcription from parental and progeny viral DNA genomes. These results provide new information about how cells counter DNA virus replication in the nucleus and provide possible approaches to enhance the ability of human cells to resist HSV infection.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


Sign in / Sign up

Export Citation Format

Share Document