scholarly journals The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA.

1990 ◽  
Vol 64 (5) ◽  
pp. 2345-2359 ◽  
Author(s):  
M J Marton ◽  
S B Baim ◽  
D A Ornelles ◽  
T Shenk
1989 ◽  
Vol 9 (2) ◽  
pp. 820-822 ◽  
Author(s):  
L A Chodosh ◽  
S Buratowski ◽  
P A Sharp

The adenovirus major late transcription factor (MLTF), or upstream stimulatory factor, is a human promoter-specific transcription factor which recognizes the near-palindromic sequence GGCCACGTGACC (R. W. Carthew, L. A. Chodosh, and P. A. Sharp, Cell 43:439-448, 1985; L. A. Chodosh, R. W. Carthew, and P. A. Sharp, Mol. Cell. Biol. 6:4723-4733, 1986; M. Sawadogo and R. G. Roeder, Cell 43:165-175, 1985). We describe here a protein found in the yeast Saccharomyces cerevisiae which possesses DNA-binding properties that are virtually identical to those of human MLTF. These two proteins recognize the same DNA-binding site, make the same purine nucleotide contacts, and are affected in the same manner by mutations in the MLTF-binding site.


1994 ◽  
Vol 14 (3) ◽  
pp. 1603-1612 ◽  
Author(s):  
K Ohtani ◽  
J R Nevins

A variety of studies have now implicated the cellular transcription factor E2F as a key participant in transcription control during the cell growth cycle. Although the recent isolation of molecular clones encoding proteins that are components of the E2F activity (E2F1 and DP-1) provides an approach to defining the specific involvement of E2F in these events, definitive experiments remain difficult in the absence of appropriate genetic systems. We have now identified a Drosophila equivalent of E2F1 that we hope will allow an eventual genetic approach to the role of E2F in cellular regulatory events. A cDNA clone was isolated from a Drosophila cDNA library by using a probe containing sequence from the E2F1 DNA binding domain. The sequence of the clone, which we term drosE2F1, demonstrates considerable homology to the human E2F1 sequence, with over 65% identity in the DNA binding region and 50% identity in the region of E2F1 known to interact with the retinoblastoma gene product. A glutathione S-transferase-drosE2F1 fusion protein was capable of binding specifically to an E2F recognition site, and transfection assays demonstrated that the drosE2F1 product was capable of transcription activation, dependent on functional E2F sites as well as sequences within the C terminus of the protein. Finally, we have also identified E2F recognition sequences within the promoter of the Drosophila DNA polymerase alpha gene, and we demonstrate that the drosE2F1 product activates transcription of a test gene under the control of this promoter. We conclude that the drosE2F1 cDNA encodes an activity with extensive structural and functional similarity to the human E2F1 protein.


1990 ◽  
Vol 10 (12) ◽  
pp. 6192-6203
Author(s):  
H C Hurst ◽  
N Masson ◽  
N C Jones ◽  
K A Lee

Promoter elements containing the sequence motif CGTCA are important for a variety of inducible responses at the transcriptional level. Multiple cellular factors specifically bind to these elements and are encoded by a multigene family. Among these factors, polypeptides termed activating transcription factor 43 (ATF-43) and ATF-47 have been purified from HeLa cells and a factor referred to as cyclic AMP response element-binding protein (CREB) has been isolated from PC12 cells and rat brain. We demonstrated that CREB and ATF-47 are identical and that CREB and ATF-43 form protein-protein complexes. We also found that the cis requirements for stable DNA binding by ATF-43 and CREB are different. Using antibodies to ATF-43 we have identified a group of polypeptides (ATF-43) in the size range from 40 to 43 kDa. ATF-43 polypeptides are related by their reactivity with anti-ATF-43, DNA-binding specificity, complex formation with CREB, heat stability, and phosphorylation by protein kinase A. Certain cell types vary in their ATF-43 complement, suggesting that CREB activity is modulated in a cell-type-specific manner through interaction with ATF-43. ATF-43 polypeptides do not appear simply to correspond to the gene products of the ATF multigene family, suggesting that the size of the ATF family at the protein level is even larger than predicted from cDNA-cloning studies.


Sign in / Sign up

Export Citation Format

Share Document