scholarly journals The vaccinia virus 4c and A-type inclusion proteins are specific markers for the intracellular mature virus particle.

1996 ◽  
Vol 70 (6) ◽  
pp. 3372-3377 ◽  
Author(s):  
D Ulaeto ◽  
D Grosenbach ◽  
D E Hruby
Author(s):  
Elizabeth S. Priori ◽  
T. Shigematsu ◽  
B. Myers ◽  
L. Dmochowski

Spontaneous release of type C virus particles in long-term cultures of mouse embryo cells as well as induction of similar particles in mouse embryo cell cultures with IUDR or BUDR have been reported. The presence of type C virus particles in cultures of normal rat embryos has not been reported.NB-1, a culture derived from embryos of a New Zealand Black (NB) rat (rats obtained from Mr. Samuel M. Poiley, N.C.I., Bethesda, Md.) and grown in McCoy's 5A medium supplemented with 20% fetal calf serum was passaged weekly. Extracellular virus particles similar to murine leukemia particles appeared in the 22nd subculture. General appearance of cells in passage 23 is shown in Fig. 1. Two budding figures and one immature type C virus particle may be seen in Fig. 2. The virus particles and budding were present in all further passages examined (currently passage 39). Various stages of budding are shown in Figs. 3a,b,c,d. Appearance of a mature virus particle is shown in Fig. 4.


2000 ◽  
Vol 11 (7) ◽  
pp. 2497-2511 ◽  
Author(s):  
Jacomine Krijnse Locker ◽  
Annett Kuehn ◽  
Sibylle Schleich ◽  
Gaby Rutter ◽  
Heinrich Hohenberg ◽  
...  

The simpler of the two infectious forms of vaccinia virus, the intracellular mature virus (IMV) is known to infect cells less efficiently than the extracellular enveloped virus (EEV), which is surrounded by an additional, TGN-derived membrane. We show here that when the IMV binds HeLa cells, it activates a signaling cascade that is regulated by the GTPase rac1 and rhoA, ezrin, and both tyrosine and protein kinase C phosphorylation. These cascades are linked to the formation of actin and ezrin containing protrusions at the plasma membrane that seem to be essential for the entry of IMV cores. The identical cores of the EEV also appear to enter at the cell surface, but surprisingly, without the need for signaling and actin/membrane rearrangements. Thus, in addition to its known role in wrapping the IMV and the formation of intracellular actin comets, the membrane of the EEV seems to have evolved the capacity to enter cells silently, without a need for signaling.


2002 ◽  
Vol 83 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Henriette van Eijl ◽  
Michael Hollinshead ◽  
Gaener Rodger ◽  
Wei-Hong Zhang ◽  
Geoffrey L. Smith

The vaccinia virus (VV) F12L gene encodes a 65 kDa protein that is expressed late during infection and is important for plaque formation, EEV production and virulence. Here we have used a recombinant virus (vF12LHA) in which the F12L protein is tagged at the C terminus with an epitope recognized by a monoclonal antibody to determine the location of F12L in infected cells and whether it associates with virions. Using confocal and electron microscopy we show that the F12L protein is located on intracellular enveloped virus (IEV) particles, but is absent from immature virions (IV), intracellular mature virus (IMV) and cell-associated enveloped virus (CEV). In addition, F12L shows co-localization with endosomal compartments and microtubules. F12L did not co-localize with virions attached to actin tails, providing further evidence that actin tails are associated with CEV but not IEV particles. In vΔF12L-infected cells, virus morphogenesis was arrested after the formation of IEV particles, so that the movement of these virions to the cell surface was inhibited and CEV particles were not found. Previously, virus mutants lacking IEV- or EEV-specific proteins were either unable to make IEV particles (vΔF13L and vΔB5R), or were unable to form actin tails after formation of CEV particles (vΔA36R, vΔA33R, vΔA34R). The F12L deletion mutant therefore defines a new stage in the morphogenic pathway and the F12L protein is implicated as necessary for microtubule-mediated egress of IEV particles to the cell surface.


2001 ◽  
Vol 75 (22) ◽  
pp. 11034-11055 ◽  
Author(s):  
Gareth Griffiths ◽  
Roger Wepf ◽  
Thomas Wendt ◽  
Jacomine Krijnse Locker ◽  
Marek Cyrklaff ◽  
...  

ABSTRACT In a series of papers, we have provided evidence that during its assembly vaccinia virus is enveloped by a membrane cisterna that originates from a specialized, virally modified, smooth-membraned domain of the endoplasmic reticulum (ER). Recently, however, Hollinshead et al. (M. Hollinshead, A. Vanderplasschen, G. I. Smith, and D. J. Vaux, J. Virol. 73:1503–1517, 1999) argued against this hypothesis, based on their interpretations of thin-sectioned material. The present article is the first in a series of papers that describe a comprehensive electron microscopy (EM) analysis of the vaccinia Intracellular Mature Virus (IMV) and the process of its assembly in HeLa cells. In this first study, we analyzed the IMV by on-grid staining, cryo-scanning EM (SEM), and cryo-transmission EM. We focused on the structure of the IMV particle, both after isolation and in the context of viral entry. For the latter, we used high-resolution cryo-SEM combined with cryofixation, as well as a novel approach we developed for investigating vaccinia IMV bound to plasma membrane fragments adsorbed onto EM grids. Our analysis revealed that the IMV is made up of interconnected cisternal and tubular domains that fold upon themselves via a complex topology that includes an S-shaped fold. The viral tubules appear to be eviscerated from the particle during viral infection. Since the structure of the IMV is the result of a complex assembly process, we also provide a working model to explain how a specialized smooth-ER domain can be modulated to form the IMV. We also present theoretical arguments for why it is highly unlikely that the IMV is surrounded by only a single membrane.


1995 ◽  
Vol 69 (6) ◽  
pp. 3560-3574 ◽  
Author(s):  
B Sodeik ◽  
S Cudmore ◽  
M Ericsson ◽  
M Esteban ◽  
E G Niles ◽  
...  
Keyword(s):  

2012 ◽  
Vol 93 (9) ◽  
pp. 1876-1886 ◽  
Author(s):  
Virginie Doceul ◽  
Michael Hollinshead ◽  
Adrien Breiman ◽  
Kathlyn Laval ◽  
Geoffrey L. Smith

Vaccinia virus (VACV) spreads across cell monolayers fourfold faster than predicted from its replication kinetics. Early after infection, infected cells repulse some superinfecting extracellular enveloped virus (EEV) particles by the formation of actin tails from the cell surface, thereby causing accelerated spread to uninfected cells. This strategy requires the expression of two viral proteins, A33 and A36, on the surface of infected cells and upon contact with EEV this complex induces actin polymerization. Here we have studied this phenomenon further and investigated whether A33 and A36 expression in cell lines causes an increase in VACV plaque size, whether these proteins are able to block superinfection by EEV, and which protein(s) on the EEV surface are required to initiate the formation of actin tails from infected cells. Data presented show that VACV plaque size was not increased by expression of A33 and A36, and these proteins did not block entry of the majority of EEV binding to these cells. In contrast, expression of proteins A56 and K2 inhibited entry of both EEV and intracellular mature virus. Lastly, VACV protein B5 was required on EEV to induce the formation of actin tails at the surface of cells expressing A33 and A36, and B5 short consensus repeat 4 is critical for this induction.


2007 ◽  
Vol 81 (12) ◽  
pp. 6231-6240 ◽  
Author(s):  
Christopher B. Whitehurst ◽  
Erik J. Soderblom ◽  
Michelle L. West ◽  
Raquel Hernandez ◽  
Michael B. Goshe ◽  
...  

ABSTRACT Sindbis virus is a single-stranded positive-sense RNA virus. It is composed of 240 copies of three structural proteins: E1, E2, and capsid. These proteins form a mature virus particle composed of two nested T=4 icosahedral shells. A complex network of disulfide bonds in the E1 and E2 glycoproteins is developed through a series of structural intermediates as virus maturation occurs (M. Mulvey and D. T. Brown, J. Virol. 68:805-812, 1994; M. Carleton et al., J. Virol. 71:1558-1566, 1997). To better understand the nature of this disulfide network, E1 and E2 cysteinyl residues were labeled with iodoacetamide in the native virus particle and analyzed by liquid chromatography-tandem mass spectrometry. This analysis identified cysteinyl residues of E1 and E2, which were found to be label accessible in the native virus particle, as well as those that were either label inaccessible or blocked by their involvement in disulfide bonds. Native virus particles alkylated with iodoacetamide demonstrated a 4-log decrease in viral infectivity. This suggests that the modification of free cysteinyl residues results in the loss of infectivity by destabilizing the virus particle or that a rearrangement of disulfide bonds, which is required for infectivity, is blocked by the modification. Although modification of these residues prevented infectivity, it did not alter the ability of virus to fuse cells after exposure to acidic pH; thus, modification of free cysteinyl residues biochemically separated the process of infection from the process of membrane fusion.


Virology ◽  
1992 ◽  
Vol 186 (2) ◽  
pp. 777-782 ◽  
Author(s):  
Bernard Y. Amegadzie ◽  
Jerry R. Sisler ◽  
Bernard Moss

Sign in / Sign up

Export Citation Format

Share Document